6.2.13. ИЗОЛЯЦИЯ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН
6.2.13. ИЗОЛЯЦИЯ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН
Надежность и долговечность электрических машин обусловлена главным образом их техническими показателями и качеством электроизоляционных материалов. Наибольший вклад в разработку и внедрение новых изоляционных материалов, конструкций на их основе и технологических процессов, обеспечивающих в значительной мере прогресс в электромашиностроении, внесли специалисты завода «Электросила» и отделение изоляции ВЭИ (впоследствии Всесоюзный научно-исследовательский институт электроизоляционных материалов — ВНИИЭИМ, г. Москва).
В 30–40-х годах завод «Электросила», изготавливая все более мощные высоковольтные турбо- и гидрогенераторы и двигатели, успешно преодолел барьеры высокого напряжения 6–13, 8–15, 15–20 кВ, используя наиболее передовые в то время конструкцию и технологический процесс нанесения непрерывной слюдяной изоляции, пропитанной битумным связующим, вакуум-нагнетательным способом. Основными разработчиками этой системы изоляции были в предвоенные годы — Г.И. Сканави, а в послевоенные — П.Н. Куракин и В.Н. Королев.
Следующий качественный скачок в развитии высоковольтной изоляции на заводе «Электросила» произошел в 60-е годы, когда создание отечественной термореактивной изоляции на основе пропитанных лент «слюдотерм» резко повысило надежность изоляции. Это явилось результатом совместных усилий химиков — разработчиков связующего (Р.В. Молотков), создателей слюдяных бумаг (Ю.В. Корицкий, Н.В. Александров) и технологов (И.Т. Сушкова). Выдающуюся роль в организации и координации этой работы на заводе «Электросила» сыграл В.Н. Королев.
Одновременно подобная система изоляции создавалась с помощью ВНИИЭИМ на харьковском заводе «Электротяжмаш» (А.В. Хвальков-ский, Р.С. Холодовская, В.Б. Бунер). В эти же годы термореактивная изоляция с использованием принципа вакуум-нагнетательной пропитки сухих лент («монолит») была разработана во ВНИИЭИМ (Н.В. Александров, С.Г. Трубачев, В.Г. Огоньков) и успешно внедрена на крупнейших электромашиностроительных заводах: «Уралэлектротяжмаш», «Сибэлектротяжмаш», Лысьвенский турбогенераторный завод.
В 1968 г. на первых гидрогенераторах с термореактивной изоляцией было обнаружено явление электроэрозионного повреждения изоляции (пазовый разряд), характерное для твердой термореактивной изоляции в сочетании с традиционной конструкцией пазового крепления. За короткий срок (2–3 года) пазовый разряд приводил к полному разрушению изоляции. Исследования, проведенные на моделях и реальных генераторах, позволили создать систему упругого пазового уплотнения обмотки. Эта конструкция, применяемая с 1970 г. на всех высоковольтных машинах, выпускаемых заводом «Электросила», позволила полностью исключить это явление и избежать серьезных проблем, которые позднее возникли у ряда ведущих фирм за рубежом. В это же время были созданы материалы для принципиально новой системы крепления лобовых частей обмотки.
В 1970–1979 гг. на заводе «Электросила» Б.Д. Ваксером, З.М. Гуревичем, Т.Ю. Баженовой, Ю.Л. Пресновым были выполнены фундаментальные исследования долговечности и надежности термореактивной изоляции на лабораторных установках: 1) испытания на электрическое старение, механические воздействия и вибрацию; 2) функциональные испытания, совмещающие воздействие электрического поля и термомеханические напряжения; 3) исследования систем пазового крепления.
Результаты этих исследований позволили значительно снизить толщину изоляции статорных обмоток, что чрезвычайно важно для улучшения технико-экономических показателей Турбо- и гидрогенераторов. При этом повысились качество и надежность машин в эксплуатации, была обеспечена стабильность изоляции в производстве путем внедрения новых чувствительных методов контроля, использующих ионизационные явления.
В середине 70-х годов потребовалось повышение напряжения турбогенераторов мощностью 800–1200 МВт до 24 кВ и исключение коронирования обмотки. Для этого на заводе «Электросила» было создано эффективное и надежное короногасящее покрытие на основе эмали с наполнителями, имеющими нелинейные вольт-амперные характеристики. Разработанные модификации конструкции такого покрытия и методы контроля эмали, обеспечивающие его стабильность, а также простоту производства, позволили использовать его во всем существующем диапазоне классов напряжений высоковольтных электрических машин.
С конца 70-х годов начались работы по совершенствованию термореактивной изоляции «слюдотерм». Она основывалась на изготовлении катушек, пропитываемых и запекаемых до укладки обмотки в электрическую машину. Ее преимущество состояло в том, что эта конструкция и технология не ограничивали габариты электрических машин, обеспечивали ремонтопригодность обмоток, т.е. замену секций, стержней, катушек в случае пробоя, после длительного срока эксплуатации и т.п. Такая изоляция была применена в машинах с диаметром сердечника статора более 1–1,5 м. По существу, было создано новое поколение изоляции. Изменение состава связующего позволило при сохранении и некотором упрощении технологии повысить плотность слюдяного барьера в изоляции, существенно улучшить ее механические и электрические характеристики. Проведенные всесторонние испытания, в том числе с использованием пазовой модели, показали, что модернизация термореактивной изоляции позволяет снизить толщину изоляции на 25–40% при сохранении ее надежности и долговечности. Это обеспечило возможность создания современных мощных турбогенераторов с воздушным охлаждением, а также конкурентоспособных гидрогенераторов. Эти работы по изоляции были выполнены на заводе «Электросила» под руководством Ю.Л. Преснова (до 1979 г.), а затем В.В. Петрова.
Для электрических машин с диаметром сердечника статора до 1–1,5 м была применена система изоляции «монолит», при которой статор с уложенными сухими обмотками проходил вакуумно-нагнетательную пропитку в специальном котле, а в дальнейшем термообработку в печах. Система «монолит» позволила повысить электрическую и механическую прочность изоляции при одновременном снижении ее толщины и повышении класса нагревостойкости с В на F. Срок жизни новой изоляции был определен до 35 лет. Все это позволило улучшить использование активных материалов, повысить электромагнитные нагрузки. В результате появилась техническая возможность существенно (на 25–40%) снизить массу электрических машин, повысить коэффициент полезного действия по сравнению с машинами с прежними видами изоляции. Значительный объем исследований и разработок по внедрению в конструкцию машин системы изоляции «монолит» был проведен на заводе «Сибэлектротяжмаш» под руководством A.M. Евлантьева и В.Г. Сякова. Технологию изготовления высоковольтных электрических машин с этой изоляцией освоил также Лысьвенский турбогенераторный завод и позднее Баранчинский электромеханический завод.
В настоящее время практически все высоковольтные электрические машины выпускаются с термореактивной изоляцией, что обеспечивает высокий уровень надежности обмоток.
В заключение необходимо рассмотреть вопросы изоляции низковольтных электрических машин. До 1965 г. на заводе «Электросила» для низковольтных электрических машин переменного тока напряжением до 1200 В применялись две системы изоляции: 1) микалентная битумно-масляная для рабочих температур до 130 °С; 2) стекломикалентная на основе кремнийорганических связующих для рабочих температур до 180 °С. Последняя была создана на основе работ К.А. Андрианова по химии кремнийорганических материалов. Начиная с 1965 г., под руководством Е.П. Богдановой была разработана система изоляции на основе слюдопластовой бумаги производства Ленинградской слюдяной фабрики и эпоксидно-фенольных связующих класса нагревостойкости F.
С 1969 г. проводились разработки и внедрение полиимидной пленки и композиций на ее основе. Переход на пленочные материалы позволил снизить толщину изоляции примерно на 40%, соответственно повысились технические параметры электрической машины (коэффициент заполнения паза, удельная мощность). По техническим заданиям специалистов завода «Электросила» сотрудниками Всесоюзного научно-исследовательского института кабельной промышленности (ВНИИКП, г. Москва) был разработан провод с полиимидно-фторопластовой изоляцией с двусторонней толщиной 0,16 мм (выпускает завод «Москабель»). Уже в сериях машин постоянного тока П и 2П якорная обмотка выполнялась с использованием пленочных материалов.
Создание современной низковольтной изоляции проходило под руководством и при непосредственном участии Ю.Л. Преснова, В.В. Петрова и И.Т. Сушковой.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 1.9. ИЗОЛЯЦИЯ ЭЛЕКТРОУСТАНОВОК
Глава 1.9. ИЗОЛЯЦИЯ ЭЛЕКТРОУСТАНОВОК Область применения Вопрос. Какова область распространения настоящей главы Правил?Ответ. Распространяется на выбор изоляции электроустановок переменного тока на номинальное напряжение 6-750 кВ
Изоляция ВЛ
Изоляция ВЛ Вопрос. Какой должна быть удельная эффективная длина пути утечки поддерживающих гирлянд изоляторов и штыревых изоляторов ВЛ на металлических и железобетонных опорах в зависимости от СЗ и номинального напряжения?Ответ. Должна приниматься по табл. 1.9.1Таблица
Внешняя стеклянная и фарфоровая изоляция электрооборудования и ОРУ
Внешняя стеклянная и фарфоровая изоляция электрооборудования и ОРУ Вопрос. Как должны выбираться удельная эффективная длина пути утечки внешней фарфоровой изоляции, а также изоляторы гибких и жестких наружных открытых токопроводов?Ответ. Должны выбираться по данным
Изоляция
Изоляция Вопрос. Как крепится СИП к опорам?Ответ. Крепится без применения изоляторов (2.4.35).Вопрос. Какие приспособления следует применять на ВЛ с неизолированными и изолированными проводами?Ответ. Независимо от материала опор, степени загрязнения атмосферы и
Защита вращающихся электрических машин от грозовых перенапряжений
Защита вращающихся электрических машин от грозовых перенапряжений Вопрос. К какому электрооборудованию допускается непосредственно присоединять ВЛ на металлических и железобетонных опорах?Ответ. Допускается непосредственно присоединять к генераторам (синхронным
Смазка подшипников электрических машин
Смазка подшипников электрических машин Вопрос. При каком условии рекомендуется объединять системы циркуляционной смазки электрических машин и технологического оборудования?Ответ. Рекомендуется объединять, если применяемый сорт масла пригоден для тех и других и если
Изоляция крыши
Изоляция крыши Как известно, на чердаке скапливается влага, которая проникает на него с нижних этажей и выводится с помощью вентиляционных устройств. Можно сказать, что чердак представляет собой промежуточную зону между жилым помещением и улицей. В том случае, если он
7.4. Особенности организации ремонта взрывозащищенных электрических машин
7.4. Особенности организации ремонта взрывозащищенных электрических машин 7.4.1. Ремонт электрооборудования, связанный с восстановлением и изготовлением деталей и сборочных единиц, неисправность которых может повлечь за собой нарушение взрывозащищенности
1.9. Изоляция электроустановок
1.9. Изоляция электроустановок Область применения. ОпределенияВопрос 352. Какая область распространения настоящего раздела ПУЭ?Ответ. Распространяется на выбор изоляции электроустановок переменного тока на номинальное напряжение 6-750 кВ.Вопрос 353. Что является длиной пути
1. Изоляция района боевых действий
1. Изоляция района боевых действий Как отмечалось в зарубежных публикациях, эта боевая задача является главной для истребителей-бомбардировщиков. Однако самолеты этого назначения по своим характеристикам и боевым возможностям мало подходили для условий ведения
Защита вращающихся электрических машин от грозовых перенапряжений
Защита вращающихся электрических машин от грозовых перенапряжений Вопрос 149. К какому электрооборудованию допускается непосредственно присоединять воздушные линии на металлических и железобетонных опорах?Ответ. Допускается непосредственно присоединять к
Изоляция
Изоляция Вопрос 205. Как крепится самонесущий изолированный провод к опорам?Ответ. Крепится без изоляторов (п. 2.4.35).Вопрос 206. Какие приспособления следует применять на ВЛ с неизолированными и изолированными проводами независимо от материала опор, степени загрязнения
ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации
ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации Открытие действия «электрического конфликта» на магнитную стрелкуВ июне 1820 г. в Копенгагене была издана на латинском языке небольшая брошюра