Свойства расплавов стекол
Свойства расплавов стекол
К свойствам расплавов стекломассы относятся вязкость, связанная с ней скорость твердения, поверхностное натяжение и кристаллизация, а также теплоемкость, теплопроводность, электрическая проводимость. Значение этих свойств при производстве стекла очень велико, их необходимо знать для правильной обработки изделий из стекла.
Следует иметь в виду, что выделившиеся в стекломассе кристаллы являются следствием нарушения технологического режима и приводят к браку стеклоизделий.
Вязкость (внутреннее трение) – свойство жидкостей (расплавов) и газов оказывать сопротивление перемещению одной их части относительно другой.
При движении слоев жидкости между ними образуются силы, замедляющие движения одних слоев относительно других, которые пропорциональны площади соприкосновения слоев и разности скоростей их передвижения. Коэффициент пропорциональности называют коэффициентом внутреннего трения жидкости или вязкости. Вязкость измеряют в Па*с.
Свойство стекломассы постепенно увеличивать свою вязкость с уменьшением температуры позволяет изготовлять изделия самыми различными способами и разных конфигураций. Если в начале выработки стекло пластично и может принять при определенном усилии любую форму, то в конце вязкость его увеличивается и изделие затвердевает настолько, что способно сохранить свою форму при дальнейшей обработке. Именно способность стекла постепенно изменять свою вязкость в зависимости от температуры позволяет придавать стеклу различную форму при его обработке на стеклодувной горелке.
Вязкость в сильной степени зависит от температуры. На рис.3 приведена кривая изменения вязкости в зависимости от температуры.
В зависимости от скорости нарастания вязкости при понижении температуры в области формования различают «длинные» и «короткие» стекла. Область рабочей вязкости стекла для «длинных» стекол лежит в температурном интервале приблизительно 450-500 градусов С, для «коротких» – 220-250 градусов С. Температурная область формования имеет большое значение при стеклодувных работах. «Длинные» стекла, например, позволяют производить больше операций за определенный промежуток времени, так как они медленнее затвердевают.
Вязкость стекла зависит от химического состава стекла, хотя и в меньшей степени, чем от температуры. Щелочные и щелочноземельные окислы как правило понижают вязкость стекла при всех температурах, но некоторые повышают ее. Ряд окислов оказывает сложное влияние на вязкость стекла. К примеру, СаО при низких температурах повышает вязкость, а при высоких температурах в небольших количествах (до 8-10%) существенно снижает вязкость, а в больших количествах увеличивает ее. При замене СаО на MgO вязкость стекла при высоких температурах увеличивается. Оксид цинка ZnO, особенно при высоких температурах, часто понижает вязкость стекла. Сложно влияет на вязкость борный ангидрит, а именно: при низких температурах при введении примерно до 15 процентов ингредиента вязкость стекла повышается, при дальнейшем увеличении содержания борного ангидрита вязкость уменьшается; при высоких температурах борный ангидрит понижает вязкость стекла.
Скорость твердения. Скорость твердения стекол характеризуется изменением вязкости в зависимости от температуры и времени.
При выработке стеклоизделий большое значение имеет скорость твердения стекол. Технологический режим формования стеклоизделий строится так, чтобы процесс придания изделию геометрической формы происходил при пластичном состоянии стекла (соответствующих значениях вязкости), а к окончанию процесса формования необходимо, чтобы стекло затвердевало и без задержки можно было бы перемещать его на последующую обработку. Существует правило, что чем быстрее стекло затвердевает, тем быстрее его следует вырабатывать, и наоборот. Это правило лежит в основе выбора типа стекол для формования стеклоизделий различными способами.
На скорость твердения влияют изменение температуры, формы и размер изделия, а также химический состав стекла, а также химический состав стекла: оксиды, повышающие вязкость, как правило, повышают и скорость твердения стекла, соответственно, оксиды, понижающие вязкость стекла, понижают и скорость твердения. Большое влияние на скорость твердения стекла оказывают окрашивающие оксиды – NiO, FeO, CoO, СuO и др. Они понижают теплопрозрачность стекломассы и скорость твердения сильно изменяется: чем меньше теплопрозрачность, тем более неравномерно охлаждаются и твердеют стекла – быстрее с поверхности и медленнее внутри.
Кроме того, скорость твердения зависит от формы и размера изделий зависит от формы и размера изделий – чем крупнее изделие и чем меньше его поверхность, тем медленнее оно остывает и затвердевает; от первоначальной температуры стекла – чем она выше, тем быстрее стекло охлаждается и твердеет; от теплоемкости и теплопроводности стекол, а также от их способности излучать тепловые лучи.
Для выработки художественных изделий ручным выдувным способом требуются стекла с малой скоростью твердения.
Поверхностное натяжение – характеристика межмолекулярного взаимодействия в жидкости; оно равно отношению силы, действующей в плоскости, касательной к поверхности жидкости (в сторону ее сокращения), на элемент контура, ограничивающего эту поверхность, к длине этого элемента. Поверхностное натяжение измеряется в Н/м и зависит от химической природы жидкости и температуры, уменьшаясь с повышением температуры. Поверхностное натяжение расплавленных стекол при температуре 1000-1400 градусов С составляет 0,22-0,38 Н/м. При изменении температуры на 100 градусов С поверхностное натяжение изменяется всего на 1-2%. Поверхностное натяжение расплавленной стекломассы в 3-4 раза превышает поверхностное натяжение воды.
В технологии стекла поверхностное натяжение играет существенную роль, так как при варке стекла оно влияет на удаление пузырей и на однородность стекломассы. Величина поверхностного натяжения в значительной мере определяет рост газового пузыря и тем самым подъемную силу пузыря и скорость его удаления из стекломассы. Поверхностными явлениями обусловлено появление варочной пены, ее устойчивость.
Влияет оно и на скорость перемещения и растворения в стекломассе свилей – сотообразных или пучкообразных сплетений отдельных слоев стекломассы, отличающихся по химическому составу. Если поверхностное натяжение стекла свили больше поверхностного натяжения основного стекла, то свиль стремится принять шарообразную форму, что затрудняет ее растворение, а если поверхностное натяжение основного стекла больше поверхностного натяжения стекла свили, то свиль будет стремиться растянуться в пленку и охватить собой основную массу стекла.
Снижение поверхностного натяжения достигается введением в стекло поверхностно-активных компонентов; таким путем можно добиться снижения натяжения на 25-30%. Незначительное влияние на поверхностное натяжение обычных промышленных стекол оказывает также изменение температуры.
Поверхностным натяжением определяются такие процессы обработки, как термическое полирование поверхности, горячая отрезка колпачка и оплавление края изделий.
Кристаллизационная способность стекол. Кристаллизационной способностью стекла называется склонность его к кристаллизации. Кристаллизация при производстве стекла, т.е. те температурные пределы, внутри которых они могут закристаллизоваться, а также скорость этой кристаллизации необходимо знать, чтобы установить оптимальные режимы варки стекла и выработки качественных изделий. Особенно важное значение имеют кристаллизационные свойства при проведении стеклодувных работ.
Кристаллизация стекла начинается с возникновения мелких кристаллов, не видимых вооруженным глазом. Затем при определенных благоприятных условиях эти кристаллы могут расти, достигая значительных размеров – до нескольких сот микрон и больше. Первое явление, связанное с образованием центров кристаллизации, получило название способности кристаллизации; второе, связанное со скоростью роста кристаллов, получило название скорости кристаллизации. Эти явления взаимосвязаны, наличие этих двух факторов приводит к заметной кристаллизации стекла. Характер кристаллизации зависит от соотношения скорости роста кристаллов и скорости образования центров кристаллизации. Если скорость роста кристаллов будет высокой, в стекле будут расти одиночные кристаллы или кристаллические сферолиты. Но если скорость роста кристаллов мала, а скорость образования кристаллизационных центров велика, в стекле образуется множество мелких кристаллов.
Температура оказывает значительное влияние на кристаллизацию стекла. Существует такая температура, выше которой кристаллизация происходить не может; она называется температурой верхнего предела кристаллизации. Температура, ниже которой также невозможна кристаллизация, называется температурой нижнего предела кристаллизации. При температурах выше верхнего предела кристаллизации кристаллы растворяются в расплаве; при температурах ниже нижнего предела кристаллизации они не образовываются из-за повышенной вязкости стекла. На рис.5 приведены кривые зависимости способности кристаллизации (кривая 1) и скорости кристаллизации (кривая 2 ) от температуры.
Заштрихованный участок показывает область температур, в которой совпадают оба явления кристаллизации; именно она представляет наибольшую опасность с точки зрения возникновения кристаллизации. В практике производства стекла режим устанавливают таким образом, чтобы за возможно более короткий срок преодолеть эту область температур и не дать стеклу закристаллизоваться.
Кристаллизация стекла зависит от определенных факторов, к которым относятся химический состав стекла, вязкость стекла, вид применяемого сырья, взаимная растворимость отдельных компонентов, продолжительность выдерживания расплава при определенных температурах, условия термической обработки стекломассы. Влияние отдельных окислов носит сложный характер и зависит от конкретного состава стекла. Существует ряд закономерностей, которых придерживаются при определении состава стекла. Известно, что увеличение числа компонентов ведет к уменьшению склонности стекла к кристаллизации. Следует иметь в виду, что склонность к кристаллизации при замене одних окислов другими уменьшается с повышением вязкости стекла в температурной области кристаллизации.
Теплоемкость и теплопроводность характеризуют теплопередачу в расплаве стекла при стекловарении, формовании, термической обработке. При высоких температурах теплопроводность происходит только в тонких слоях стекла. При увеличении толщины слоя интенсивность передачи теплоты увеличивается благодаря излучению. Теплопроводность, определенная без учета толщины образца, называется эффективной теплопроводностью и включает в себя радиационную (лучистую) составляющую. Для технологических процессов варки стекла и формирования изделий, гутного декорирования главную роль играет прозрачность стекол для излучения в инфракрасной области спектра (теплопрозрачность). Теплопрозрачность уменьшают окрашивающие оксиды, особенно CoO, CuO, FeO, NiO. С повышением содержания в стекле этих оксидов роль теплопередачи излучением уменьшается и возрастает роль теплопроводности.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
6.2. Свойства и отношения
6.2. Свойства и отношения Примеры понятий, которые мы до сих пор приводили, укладывались в определение понятий как множества ситуаций. Но все ли понятия, которые представляются нам интуитивно ясными и проявляются в языке, таковы? Оказывается, не все. Возьмем, например,
Оптические свойства
Оптические свойства Преломление света – так в науке называют изменение направления светового луча при его прохождении через границу двух прозрачных сред. Величина, показывающая преломление света стекла, всегда больше единицы.Отражение света – это возвращение
2. Механические свойства металлов
2. Механические свойства металлов Механические свойства металлов определяются следующими характеристиками: предел упругости ?Т, предел текучести ?Е, предел прочности относительное удлинение ?, относительное сужение ? и модуль упругости Е, ударная вязкость, предел
2. Основные свойства жидкости
2. Основные свойства жидкости Плотность жидкости.Если рассмотреть произвольный объем жидкости W, то он имеет массу M.Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна где M – масса жидкости.Если требуется узнать r в
4. Гидростатическое давление и его свойства
4. Гидростатическое давление и его свойства Общие дифференциальные уравнения равновесия жидкости – уравнения Л. Эйлера для гидростатики.Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если
Свойства твердых стекол
Свойства твердых стекол Механические свойства.Плотность. Плотностью называется отношение массы тела к его объему, измеряется в кг/м куб.Плотность стекол зависит от химического состава, Значительно повышают плотность оксиды тяжелых металлов. В состав самых тяжелых
Классификация сортовых стекол и стеклоизделий.
Классификация сортовых стекол и стеклоизделий. Посуду и декоративные изделия из стекла, используемые в быту, обычно называют сортовой посудой или сортовыми изделиями; соответственно стекла, из которых изготовляют эти изделия, называют сортовыми.Сортовые
Варка окрашенных и глушеных стекол. Обесцвечивание стекла
Варка окрашенных и глушеных стекол. Обесцвечивание стекла В производстве полых стеклоизделий большое значение имеют окрашивание, глушение и обесцвечивание стекла. В производстве сортовой посуды цвет имеет декоративное значение. Глушение и обесцвечивание стекла можно
5. Технологические свойства сплавов
5. Технологические свойства сплавов Под технологическими свойствами металлов и сплавов понимают способность металла подвергаться различным видам обработки. К технологическим свойствам металлов и сплавов относятся: литейные, ковкость, или деформируемость, в горячем и
5.1. Литейные свойства
5.1. Литейные свойства Литейные свойства двух– и трехкомпонентных сплавов можно оценить по положению их на диаграмме состояния. Закономерности изменения литейных свойств определяются при построении кривых состав – литейное свойство в совокупности с диаграммой
14.1. Свойства минералов
14.1. Свойства минералов Наиболее важными характеристиками ювелирных камней являются их оптические свойства, в частности цвет, прозрачность, показатель светопреломления, блеск, дисперсия, плеохроизм.Прозрачность – способность кристалла пропускать свет без поглощения.
2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ
2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ Основные свойства ракетного двигателя мы уже знаем.Первое свойство заключается в отсутствии специального движителя, назначение которого выполняет сам двигатель. Это оказывается возможным потому, что тяга представляет собой реакцию
§ 4.11 Волновые свойства частиц
§ 4.11 Волновые свойства частиц Его богатое воображение, его оптимистическая готовность овладеть проблемой, не затруднённые слишком критическим подходом, были бы здесь весьма уместны. А. Зоммерфельд по поводу ранней кончины В. Ритца [50] Вальтер Ритц, подобно Шерлоку
8. Плавление металлов и строение расплавов
8. Плавление металлов и строение расплавов Плавление – это физический процесс перехода металла из твердого состояния в жидкое расплавленное. Плавление – процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Поскольку