ЭЛЕКТРИЧЕСТВО В КОСМОСЕ
ЭЛЕКТРИЧЕСТВО В КОСМОСЕ
Длительное функционирование научной ОКС невозможно без развитой сети энергоснабжения на борту станции.
Пока еще не представляется возможной передача энергии с Земли прямо на борт орбитального корабля. Использование электромагнитных колебаний для беспроводной передачи энергии на расстояние дало бы, по некоторым оценкам, суммарный к. п. д. всего лишь около 0,02 %. Правда, большие возможности в этом отношении таит изобретение последних лет — квантовый генератор. Концентрация энергии в пучки высокой плотности обещает целую революцию в области передачи энергии.
А пока конструкторам ОКС приходится решать проблему источника энергии, который обладал бы качествами, свойственными всему космическому оборудованию. Электростанция орбитальной станции должна обладать чрезвычайно высокой надежностью при длительном сроке непрерывной работы, она должна быть полностью автоматизирована и иметь относительно небольшой вес. Кроме того, источник энергии на борту ОКС должен быть высокоэкономичным и не реагировать на специфические факторы космического полета (невесомость, радиацию, метеорную опасность и т. п.).
Как известно, создать энергию нельзя. Ее можно лишь откуда-то получить и соответствующим образом преобразовать. Но где же брать энергию в космосе? Может ли источник ее находиться непосредственно на борту ОКС или энергию нужно получать извне?
Прежде чем ответить на эти вопросы, следует получить хотя бы некоторое представление о потребностях ОКС в электроэнергии.
Основные потребители тока — это научно-исследовательское и специальное техническое оборудование, система обеспечения жизнедеятельности экипажа, радиоаппаратура связи с Землей или какими-либо космическими объектами, а также различные вспомогательные установки, например для управления ориентацией станции, для коррекции и изменения ее орбиты.
Потребная мощность элементов оборудования может быть различной — от долей ватта до нескольких киловатт. Но обычно приборы, проектируемые специально для использования в космосе, потребляют относительно небольшие мощности. Так, например, устанавливаемый на некоторых американских спутниках Земли детектор космического излучения потребляет 2 вт, магнетометр — 5 вт, счетчик микрометеоров — 2,5 вт, масс-спектрограф — 17 вт, аппаратура активного ретранслятора радиосигналов — 10 вт и т. д.
По-разному оценивается мощность, необходимая для поддержания условий жизнедеятельности экипажа на борту ОКС. Иностранные специалисты чаще всего здесь называют цифры 100–500 вт, иногда 1000 вт на человека [31].
Значительную долю мощности источника электропитания будут потреблять радиоаппаратура связи с Землей при передаче на Землю и обратно различной научной информации, а также системы радиосвязи с космическими кораблями-путешественниками, системы навигации и др. Мощность отдельных элементов электронной аппаратуры может составить лишь несколько десятков ватт. Но телевизионная связь с Землей потребует нескольких сот ватт, активная же многоканальная ретрансляция — нескольких киловатт, а может быть, и десятков киловатт.
Двигатели коррекции орбиты, управления станцией на орбите или изменения параметров орбиты также потребуют нескольких киловатт мощности.
Суммарная мощность бортовых электростанций на большинстве искусственных спутников США колеблется от 0,3 до 150 вт. Однако здесь нужно заметить, что оборудование большинства американских спутников довольно невелико по объему ввиду малого веса полезной нагрузки их ракет-носителей. Значительно выше мощность энергоустановки на обитаемых космических кораблях. Например, средняя мощность, потребная для орбитального полета американской пилотируемой капсулы «Меркурий», составляет около 260 вт, максимальная потребляемая мощность — не более 1 квт.
Для ОКС потребная мощность источника энергии будет еще выше: от 0,8–1 квт для небольшой станции с экипажем из одного — двух человек и до 50-100 квт для крупной орбитальной лаборатории.
Одной из трудностей в проектировании космической энергоустановки является необходимость периодически обеспечивать мощности, значительно большие, чем обычные средние потребляемые нагрузки, — так называемые пиковые нагрузки, которые могут превосходить номинальные в два — три раза. Если на борту ОКС иметь установку с постоянным потреблением энергии, которая может обеспечить пиковые нагрузки, то, очевидно, большую часть времени она будет работать с существенной недогрузкой. А это лишний вес, так как вес энергетической установки пропорционален ее мощности.
В связи с этим некоторые авторы предлагают иметь в системе энергоснабжения ОКС две энергоустановки: главную — для длительной непрерывной эксплуатации, обеспечивающую среднюю потребляемую нагрузку, и дополнительную — для кратковременной работы при пиковых нагрузках. Источник питания, рассчитанный на редкое и кратковременное применение, может быть, например, аккумулятором энергии, который подзаряжается от главного источника при невысокой загруженности последнего. Дополнительная энергоустановка имеет небольшой вес, а в целом наличие ее при оптимальном соотношении мощностей обоих источников даст возможность получить выигрыш в весе всей энергоустановки.
Кроме того, дополнительный источник энергии будет служить резервом на случай отказа главной установки или при ее ремонте и профилактике. Возможно, что в связи с этим, кроме мощной централизованной системы энергоснабжения, на борту ОКС будут автономные источники энергии небольшой мощности.
Все это свидетельствует о том, что типы космических электростанций, применяемых для ОКС, могут быть самыми разнообразными, различных мощностей и ресурсов. Конечно, на небольшой ОКС с экипажем из двух — трех человек едва ли будет возможно иметь дополнительную энергоустановку. Это, несомненно, потребует очень высокой надежности единственного бортового источника питания.
Теперь обратимся к тем методам генерирования энергии, которые могут быть применены в космическом пространстве.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Ядерные взрывы в космосе
Ядерные взрывы в космосе Перспектива использования околоземного космического пространства в качестве плацдарма для размещения ударных вооружений заставила задуматься над способами борьбы со спутниками еще до появления самих спутников.Наиболее радикальным по тем
Из фотоархива «Человек в космосе»
Из фотоархива «Человек в космосе» Запуск первого советского космического корабля «Восток-1» с Юрием Гагариным на борту. Апрель 1961 г. Лайка — первая жительница Земли на орбите. Запуск первого американского пилотируемого космического корабля. Май 1961 г. Юрий
8 Гонка за первое место в космосе
8 Гонка за первое место в космосе Президент Эйзенхауэр объявил, что были одобрены планы запусков небольших, обращающихся вокруг Земли спутников, которые должны стать частью вклада Америки в Международный геофизический год. Почти сразу все пошло не так, как надо. Вернер
Электричество из… бомбы?!
Электричество из… бомбы?! Что бы ученые ни делали, все у них бомбы получаются. Согласитесь, в этом ехидном высказывании есть большая доля истины. Однако справедливости ради укажем, что есть исследователи, которые пытаются извлечь пользу и из бомб. Проект геолога. Лет
Отели в космосе…
Отели в космосе… Говорят, что «Мир» в свое время затопили столь поспешно потому, что некий американский мультимиллиардер хотел выкупить его и превратить в своего рода туристско-развлекательный центр, чего идеологи нашей космической программы никак допустить не
Частники в космосе
Частники в космосе Когда более полувека тому назад начинались первые космические полеты, они были делом сугубо державным. Ныне же из космических держав, пожалуй, лишь Китай да Япония все еще считают покорение космоса государственной задачей. Остальные стали все больше
ЧЕЛОВЕК В КОСМОСЕ, А ЧТО ДАЛЬШЕ?
ЧЕЛОВЕК В КОСМОСЕ, А ЧТО ДАЛЬШЕ? Успехи современной космонавтики позволяют нам сегодня приоткрыть завесу будущего и заглянуть в завтрашний день науки и техники.Предлагаемая читателю книга рассказывает о проблемах, которые необходимо решить на предстоящем этапе
НИИ В КОСМОСЕ
НИИ В КОСМОСЕ Значение ОКС и тем более обитаемых станций как баз для научных исследований далеко не исчерпывается физикой Земли и космоса или метеорологией. Условия, в которых будет находиться орбитальная станция, позволят применить ее для других научных
§ 2.9 Проверка баллистического принципа в космосе
§ 2.9 Проверка баллистического принципа в космосе — О, баллистика, баллистика! Жюль Верн "Из пушки на Луну" Выше было показано (§ 2.1), что радиолокационные измерения в Космосе противоречат второму постулату теории относительности и подтверждают баллистический принцип.
§ 2.13 Звёзды-гиганты и измерение расстояний в космосе
§ 2.13 Звёзды-гиганты и измерение расстояний в космосе Одновременное наблюдение величин изменений блеска, интенсивности и смещения спектральных линий у переменных "пульсирующих" и спектрально двойных звёзд позволяет определить, кроме параметров их движений по орбитам,
Журнал „ЭЛЕКТРИЧЕСТВО"
Журнал „ЭЛЕКТРИЧЕСТВО" ГЛАВА ДВЕНАДЦАТАЯЖУРНАЛ „ЭЛЕКТРИЧЕСТВО"Русская электротехническая общественность, начавшая организовываться вокруг основанного в 1880 г. Электротехнического (VI) отдела Русского технического общества, весьма быстро почувствовала необходимость
Политические перемены на Земле и в космосе
Политические перемены на Земле и в космосе Что же произошло? Да, в общем, ничего необычного. Просто космическая политика в очередной раз стала заложницей земной — внутренней и внешней. Остановимся на первой.В октябре 1964 г. Никита Сергеевич Хрущев, великий энтузиаст
«Свой путь» Советского Союза в космосе
«Свой путь» Советского Союза в космосе 22 октября 1969 г. генсек ЦК КПСС Л. И. Брежнев, выступая с речью на приеме в Кремле, в частности, сказал, что у СССР имеется собственная обширная космическая программа, рассчитанная на многие годы, и что Советский Союз будет
Сотрудничество в космосе продолжится
Сотрудничество в космосе продолжится 17 августа руководитель Роскосмоса Владимир Поповкин и генеральный директор Европейского космического агентства (ЕКА) Жан-Жак Дорден неожиданно для всех сделали важное заявление о необходимости продолжения космических полетов в