Обеззараживание воды ультрафиолетовым излучением
Обеззараживание воды ультрафиолетовым излучением
Ультрафиолетовым называется электромагнитное излучение в пределах длин волн от 100 до 400 нм. Для обеззараживания используется «ближняя область»: 200–400 нм (длина волн природного ультрафиолетового излучения у поверхности земли больше 290 нм). Наибольшим бактерицидным действием обладает электромагнитное излучение на длине волны 200–315 нм и максимальным проявлением в области 260±10 нм. В современных УФ-устройствах применяют излучение с длиной волны 253,7 нм.
Метод УФ-дезинфекции известен с 1910 г., когда были построены первые станции для обработки артезианской воды во Франции и Германии. Бактерицидное действие ультрафиолетовых лучей объясняется происходящими под их воздействием фотохимическими реакциями в структуре молекулы ДНК и РНК, составляющими универсальную информационную основу механизма воспроизводимости живых организмов. Результат этих реакций – необратимые повреждения ДНК и РНК. Кроме того, действие ультрафиолетового излучения вызывает нарушения в структуре мембран и клеточных стенок микроорганизмов. Все это в конечном итоге приводит к их гибели.
УФ-стерилизатор представляет собой металлический корпус, внутри которого находится бактерицидная лампа. Она, в свою очередь, помещается в защитную кварцевую трубку. Вода омывает кварцевую трубку, обрабатывается ультрафиолетом и, соответственно, обеззараживается. В одной установке может быть несколько ламп. Мощности излучения современных конструкций ламп достаточно, чтобы в течение 3–5 с бактерицидное действие было максимальным: эффективность уничтожения бактерий и вирусов – 99,9 %
Основной параметр, определяющий эффективность работы установки, – доза УФ-излучения – D, мДж/см2. В мировой практике требования к минимальной дозе облучения варьируются в пределах от 16 до 40 мДж/см2. Минимальная доза, соответствующая российским нормативам, – 16 мДж/ см2. Из-за различной сопротивляемости микроорганизмов доза ультрафиолета, необходимая для инактивации, например 99,9 %, сильно варьируется от малых доз для бактерий до очень больших доз для спор и простейших.
Доза определяется интенсивностью потока лучистой энергии, временем нахождения потока в зоне облучения (обычно 1–3 с) и прозрачностью обрабатываемой воды. Дело в том, что прозрачность воды влияет на количество поглощенной световой энергии, которая не расходуется на обеззараживание, и зависит также от толщины водного слоя. Поэтому реальные величины дозы облучения пропорциональны коэффициенту пропускания ультрафиолетовых лучей. Для воды из подземного источника он составляет 0,95–0,80, для воды из реки – 0,85–0,70, а для сточной воды – 0,40–0,60. При прохождении через воду УФ-излучение ослабевает из-за эффектов поглощения и рассеяния. Такое ослабление зависит от мутности и качества воды, особенно от содержания в ней железа, марганца, а также учитывается при расчете необходимой интенсивности излучения введением специального коэффициента.
Как правило, чтобы обеззараживание воды проходило эффективно, она должна удовлетворять следующим требованиям: прозрачность – не ниже 85 %; количество взвешенных частиц – не более 1 мг/л; жесткость – менее 7 ммоль/л; общее содержание железа – не более 0,3 мг/л; марганца – не более 0,1 мг/л; содержание сероводорода – не более 0,05 мг/л; твердых взвешенных частиц – менее 10 мг/л; мутность – не более 2 мг/л по каолину; цветность – не более 35 градусов; число бактерий группы кишечной палочки – не более 10 000 в 1 л. Все эти ограничения позволяют использовать УФ-установку стерилизации воды только как последнюю ступень очистки воды. В профессиональных УФ-установках очистка воды внутренней поверхности камеры от минеральных и органических загрязнений производится промывкой слабым раствором пищевой кислоты (щавелевая, лимонная). В некоторых установках для очистки защитных кварцевых чехлов применяется механическое очистное устройство плунжерного типа с ручным или электрическим приводом.
Важнейшим качеством ультрафиолетовой обработки воды является отсутствие изменения ее физических и химических характеристик даже при дозах, намного превышающих практически необходимые. Однако и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия, что делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик. Этот способ энергозатратен, требует строжайшего соблюдения технологии, постоянной борьбы с биообрастанием источников излучения и жесткого контроля над прозрачностью воды (рассеивание лучей снижает эффективность обработки воды).
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Установка распылителя воды
Установка распылителя воды Уже не раз было сказано, что современный рынок представляет широкий выбор различных сантехнических устройств как отечественных, так и зарубежных производителей. Выбрать какое-нибудь кухонное устройство нетрудно, и помощь от него в работе
Происхождение воды
Происхождение воды Источники получения питьевой воды в зависимости от водозабора подразделяют на две основные группы – подземные воды и поверхностные
Подземные воды
Подземные воды Артезианские воды Речь идет о водах, которые с помощью насоса поднимаются на поверхность из подземного пространства. Они могут залегать под землей в несколько слоев или так называемых ярусов, которые изолированы друг от друга и отделены хотя бы одним
Артезианские воды
Артезианские воды Речь идет о водах, которые с помощью насоса поднимаются на поверхность из подземного пространства. Они могут залегать под землей в несколько слоев или так называемых ярусов, которые изолированы друг от друга и отделены хотя бы одним водонепроницаемым
Подрусловые воды
Подрусловые воды Эта вода добывается насосами из скважин, глубина которых соответствует отметкам дна ручья, реки или озера. Качество такой воды в значительной степени определяется поверхностной водой в самом водотоке, т. е. вода, добытая при помощи инфильтрационного
Поверхностные воды
Поверхностные воды Речная вода Речная вода сильнее всего подвергается загрязнению, поэтому в последнюю очередь пригодна для целей питьевого водоснабжения. Она загрязняется продуктами жизнедеятельности людей и животных. В еще большей степени загрязнение речных вод
Умягчение воды
Умягчение воды С жесткой водой сталкивается каждый, достаточно вспомнить о накипи в чайнике.Жесткость пресных природных водоемов меняется в течение года, имея минимум в период паводка. Например, в Москве, которую обслуживают четыре станции водоочистки, забор воды
Картриджи для горячей воды
Картриджи для горячей воды Картриджи к фильтрам для горячей воды изготавливаются из материалов, учитывающих высокую температуру и свойства горячей воды.Производительность фильтров для горячей воды различна и определяется их габаритами, проходным сечением, а также
Многоступенчатые системы подготовки воды
Многоступенчатые системы подготовки воды Сегодня на рынке водоочистного оборудования присутствует множество моделей и типов фильтров, предназначенных для многоступенчатой доочистки питьевой воды. Конструктивно – это соединенные между собой картриджные фильтры
Обеззараживание воды
Обеззараживание воды Микробиологические загрязнения воды занимают первое место по степени риска для здоровья человека. Сегодня доказано, что опасность заболеваний от присутствующих в воде болезнетворных микроорганизмов в тысячи раз выше, чем при загрязнении воды
4. Обработка воды сильными окислителями
4. Обработка воды сильными окислителями Обеззараживание воды реагентными методами осуществляется добавлением в воду различных химических дезинфицирующих средств или проведением специальных мероприятий. Применение химических веществ в обработке воды обычно приводит
4.3. Другие галогены для обеззараживания воды
4.3. Другие галогены для обеззараживания воды 4.3.1. Йодирование Йод – химический элемент из группы галогенов, «родственниками» которого являются фтор, хлор и бром, обозначается символом I (от греч. iodes – фиолетовый; лат Iodum), имеет порядковый номер 53, атомный – 126,90, плотность
6. Ультрафиолетовое обеззараживание
6. Ультрафиолетовое обеззараживание 6.1. Описание метода Электромагнитное излучение в пределах длин волн от 10 до 400 нм называется ультрафиолетовым.Для обеззараживания природных и сточных вод используют биологически активную область спектра УФ-облучения с длиной волны
7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ
7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ Всесторонние исследования электролиза воды провели русские ученые В.В. Петров (1802 г.), Ф.Ф. Рейс (1803 г.) и Ф. Гротгус (1805 г.).Промышленный электролизер для получения водорода и кислорода впервые в мире был сконструирован в
Из-под воды – под воду
Из-под воды – под воду Ракета 83Р комплекса РПК-6 «Водопад»В декабре 1969 года вышло постановление Совета Министров о создании противолодочного ракетного комплекса РПК-6 «Водопад» с ракетами 83Р (МГТ в качестве боевой части) и 84Р (с ядерной БЧ) для оснащения подводных лодок.