10.1. Двухкомпонентные сплавы серебра
10.1. Двухкомпонентные сплавы серебра
В ювелирной промышленности в основном используются сплавы на основе серебра, которые относятся к системе Ag – Си.
Диаграмма состояния сплавов системы Ag – Си показана на рис. 3.7.
Данная диаграмма относится к эвтектическим диаграммам с ограниченной растворимостью. Так, серебро растворяет медь, концентрация которой при температуре эвтектического превращения 779 °C может достигать 8,8 %, образуя при этом ?-твердый раствор (91,2 % Ag, 8,8 % Си). Медь, в свою очередь, растворяет серебро, максимальная растворимость которого 8 %, образуя ?-твердый раствор (92 % Си, 8 % Ag). Эвтектика (71,5 % Ag, 28,5 % Си) состоит из смеси ?– и ?-кристаллов твердых растворов. При температуре кристаллизации эвтектики (779 °C) в обоих твердых растворах достигается максимальная растворимость второго элемента. Таким образом, сплавы, содержащие 91,2—71,5 % Ag, являются доэвтектическими, а содержащие 71,5–8 % Ag – заэвтектическими. В ювелирном деле, как правило, используются сплавы, содержащие более 71,5 % Ag.
С понижением температуры растворимость меди в ?-твердом растворе и серебра в ?-твердом растворе понижается. Таким образом, ювелирные сплавы, имеющие изначально гомогенную структуру ?-твердого раствора (100—91,2 % Ag) и пониженную прочность, могут быть подвергнуты старению с целью повышения их прочности и твердости. В результате нагрева при старении из пересыщенного медью ?-твердого раствора выделяются кристаллы ?-фазы (вторичные), которые обогащены медью и обеспечивают повышение прочностных свойств. При этом количество P-фазы может составлять 10 % всей структуры. Это особенно существенно для сплавов СрМ 950, СрМ 925, СрМ 900 и СрМ 875.
При очень быстром охлаждении при закалке эвтектическое превращение в сплавах Ag – Си может быть подавлено. Последние данные рентгенографических исследований показывают, что в интервале от 100 % Ag до 100 % Си образуется только одна фаза – твердый раствор с ГЦК-решеткой. Ювелирное изделие, полученное таким образом, может использоваться при комнатных температурах, однако при повышении температур из-за нестабильности структуры свойства такого изделия, в частности декоративные, могут изменяться.
Ювелирные сплавы, имеющие изначально гомогенную структуру ?-твердого раствора (100—91,2 % Ag) и пониженную прочность, могут быть подвергнуты старению с целью повышения их прочности и твердости. В результате нагрева при старении из пересыщенного медью ?-твердого раствора выделяются кристаллы ?-фазы (вторичные), которые обогащены медью и обеспечивают повышение прочностных свойств. При этом количество ?-фазы может составлять 10 % всей структуры. Это особенно существенно для сплавов СрМ 950, СрМ 925, СрМ 900 и СрМ 875.
При очень быстром охлаждении при закалке эвтектическое превращение в сплавах Ag – Си может быть подавлено. Последние данные рентгенографических исследований показывают, что в интервале от 100 % Ag до 100 % Си образуется только одна фаза – твердый раствор с ГЦК-решеткой. Ювелирное изделие, полученное таким образом, может использоваться при комнатных температурах, однако при повышении температур из-за нестабильности структуры свойства такого изделия, в частности декоративные, могут изменяться.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
СУДЬБА "СЕРЕБРА ИЗ ГЛИНЫ’
СУДЬБА "СЕРЕБРА ИЗ ГЛИНЫ’ В 1855 году посетители Всемирной выставки в Париже среди фарфора и прочих драгоценностей с интересом рассматривали новый, впервые показанный широкой публике .экспонат — ”се- ребро из глины”. Так называли тогда алюминий. Килограмм этого металла
ЛЕКЦИЯ № 5. Сплавы
ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.
2. Медные сплавы
2. Медные сплавы Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее
3. Алюминиевые сплавы
3. Алюминиевые сплавы Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье
4. Титановые сплавы
4. Титановые сплавы Титан – металл серебристо—белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок
5. Цинковые сплавы
5. Цинковые сплавы Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло—серо—голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до
Сплавы золота
Сплавы золота Для изготовления ювелирных и других изделий далеко не всегда используют чистые металлы. Происходит это из-за высокой стоимости драгоценных металлов, недостаточной твердостью их и износоустойчивости, поэтому на практике чаще всего употребляют сплавы,
7.4. Сплавы меди, имитирующие золотые и серебряные сплавы
7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,
10. Серебро и его сплавы
10. Серебро и его сплавы Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.Серебро – металл белого
10.4. Сплавы серебра для припоев
10.4. Сплавы серебра для припоев Припой – весьма важный вспомогательный материал в ювелирном деле.Для соединения различных элементов ювелирных изделий между собой, при работе в технике скань и зернь применяют серебряные припои – сплавы на основе серебра. Основное
11. Золото и его сплавы
11. Золото и его сплавы Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого
11.1. Двухкомпонентные сплавы золота
11.1. Двухкомпонентные сплавы золота В ювелирной промышленности иногда применяют двухкомпонентные сплавы: золото – медь и золото – серебро. Рис. 11.1. Диаграмма состояния Сu – Аu.Золото и медь обладают неограниченной растворимостью в жидком, а при высоких температурах и в
13.1. Термическая обработка сплавов на основе серебра
13.1. Термическая обработка сплавов на основе серебра Термически обрабатываются сплавы системы Ag – Си, так как медь ограниченно растворима в серебре и ее растворимость изменяется с температурой.Режим термообработки состоит в закалке сплава с температурой 700 °C в воде с
46. Магний и его сплавы
46. Магний и его сплавы Магний является химически активным металлом: образующаяся на воздухе оксидная пленка МдО в силу более высокой плотности, чем у самого магния, растрескивается и не имеет защитных свойств; порошок и стружка магния легко воспламеняются; горячий и
47. Титан и его сплавы
47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,