14.2. Приборы учета электрической энергии

We use cookies. Read the Privacy and Cookie Policy

14.2. Приборы учета электрической энергии

В качестве расчетных и технических (контрольных) средств учета на предприятиях (организациях) используются электросчетчики одно-и трехфазного тока в основном двух типов: индукционные и электронные (1-, 2– и многотарифные), находящие все более широкое применение.

Индукционные трехфазные счетчики активной и реактивной энергии, применяемые в качестве расчетных приборов учета, должны иметь класс точности не ниже 2,5 (0,5; 1,0; 2,0 и 2,5) для активной и не ниже 3 (1,5; 2,0 и 3,0) для реактивной энергии.

Индукционным называется счетчик, в котором магнитное поле неподвижных токопроводящих катушек влияет на подвижный элемент из проводящего материала. Обычно это диск, по которому текут токи, индуцированные магнитным полем катушек.

В соответствии с ГОСТ 6570-75 счетчики характеризуются:

постоянной счетчика С, т. е. числом ватт-секунд, ватт-часов или киловатт-часов, приходящихся на один оборот диска прибора;

передаточным числом А, т. е. числом оборотов диска, которое он должен сделать, чтобы показание счетчика изменилось на 1 кВт-ч;

коэффициентом K счетчика, т. е. числом, на которое нужно умножить показания счетчика, чтобы получить фактический расход электроэнергии, кВт-ч.

Постоянную счетчика С можно вычислить, используя маркировку на его щитке, по формулам, приведенным в табл. 6.

Таблица 6

Формулы для определения постоянной счетчика С

Одним из недостатков индукционных счетчиков является наличие у них самохода, который представляет собой движение диска счетчика под действием напряжения, поданного на зажимы цепи напряжения, при отсутствии тока в шоковой цепи счетчика.

В соответствии с ГОСТ 6570-75 диск счетчика не должен совершать более одного полного оборота при отсутствии тока в последовательной (токовой) цепи и при любом напряжении от 80 до 110 % номинального.

Индукционные счетчики относятся к ремонтируемым невосстанавливаемым на объекте изделиям, которые должны иметь среднюю наработку до отказа не менее:

25 000 ч – для трехфазных счетчиков класса точности 0,5;

33 300 ч – для однофазных счетчиков кл. 2,0; для трехфазных счетчиков активной энергии кл. 1,0 и кл. 2,0;

37 500 ч – для однофазных счетчиков кл. 2,5 и трехфазных счетчиков реактивной энергии кл. 1,5 и кл. 2,0;

50 000 ч – для однофазных счетчиков кл. 2,0 и трехфазных счетчиков реактивной энергии кл. 3,0.

Средний срок службы до первого капитального ремонта должен быть не менее:

30 лет – для однофазных счетчиков кл. 2,0; для трехфазных счетчиков кл. 2,0 и кл. 3,0 по требованию потребителя;

27 лет – для трехфазных счетчиков кл. 2,0 и кл. 3,0;

25 лет – для однофазных счетчиков кл. 2,5;

22 года – для трехфазный счетчиков кл. 0,5, кл. 1,0 и кл. 1,5.

Индукционные счетчики могут применяться в трех или четырех-проводных сетях, в сетях с изолированной или глухозаземленной нейтралью, что можно определить по обозначению счетчика, а именно:

СА3 – трехфазный непосредственного включения или трансформаторный трехпроводный активной энергии;

СА4 – то же, четырехпроводный;

СР4 – трехфазный непосредственного включения или трансформаторный трех– и четырехпроводный реактивной энергии;

СА3У – трехфазный трансформаторный универсальный (со вторичным или смешанным счетным механизмом) трехпроводный активной энергии;

СА4У – то же, четырехпроводный;

СР4У – трехфазный трансформаторный универсальный (со вторичным или смещенным механизмом) трех– и четырехпроводный реактивной энергии.

Трансформаторным называется счетчик, предназначенный для включения через один или несколько измерительных трансформаторов.

Счетчики электронного типа одно– и трехфазные новейшей конструкции являются перспективными в условиях рынка сбыта и потребления электроэнергии, вследствие чего они все более интенсивно стали вытеснять индукционные приборы учета. Эти счетчики могут включаться в сеть непосредственно или через измерительные трансформаторы.

В соответствии с ГОСТ 30207-94 на электронные (статические) счетчики трансформаторным называется счетчик, предназначенный для включения через измерительные трансформаторы с заранее заданными коэффициентами трансформации. Показания счетчика в этом случае должны соответствовать значению энергии, прошедшей через первичную цепь.

Трансформаторным универсальным счетчиком называется счетчик, предназначенный для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для определения энергии, прошедшей через первичную цепь, необходимо показания счетчика умножить на произведение коэффициентов трансформации.

Основным достоинством электронных счетчиков является дифференцированный тариф учета электроэнергии (одно-, двух– и более тарифный), который обеспечивается с помощью внешнего устройства переключения тарифов (например, УПТ 12-100 в электросчетчике типа СЭТ4-2). Нагрузочная способность такого устройства переключения тарифов составляет от 1 до 30 счетчиков.

Многотарифный счетчик представляет собой счетчик электрической энергии, снабженный набором счетных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам.

Электронный счетчик может использоваться в качестве датчика приращения потребления электроэнергии для дистанционных информационно-измерительных систем и систем учета и распределения электроэнергии.

В соответствии с ГОСТ 30207-94 счетчики электронного типа имеют стандартизированное название – статический счетчик, т. е. счетчик, в котором ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии. В настоящем стандарте указаны электронные счетчики в соответствии с их обозначением классов точности, т. е. 1 и 2.

Постоянной статического (электронного) счетчика называется значение, выражающее соотношение между энергией, учитываемой счетчиком, и числом импульсов на испытательном стенде.

Постоянная счетчика выражается либо в импульсах на киловатт-час [имп/(кВт-ч)], либо в ватт-часах на импульс [(Вт-ч)/имп].

В табл. 7 и 8 приведены стандартные (по ГОСТ 30207-94) значения номинальных напряжений и токов, т. е. тех величин, которые являются исходными при установлении требований к счетчикам.

Таблица 7

Стандартные значения номинальных напряжений

Таблица 8

Стандартные значения номинальных токов

Максимальный ток для счетчиков непосредственного включения, т. е. наибольшее значение тока, при котором счетчик удовлетворяет требованиям точности, установленным в ГОСТ 30207-94, это предпочтительно целое, кратное номинальному току (например, 4-кратному номинальному току).

Если счетчик работает от трансформатора(ов) тока, необходимо подобрать диапазон тока счетчика в соответствии с диапазоном тока вторичной обмотки трансформатора(ов) тока. Максимальный ток в этом случае равен 1,2Iном ; 1,5Iном или 2Iном .

Зажимы счетчика должны обеспечивать подключение до двух медных или алюминиевых проводов с суммарным сечением до 5 мм. Все зажимы, предназначенные для подключения к измерительным трансформаторам напряжения, должны быть раздельными и иметь отверстия диаметром не менее 4,2 мм.

Зажимы трехфазных счетчиков, предназначенных для включения с трансформаторами тока, должны обеспечивать раздельное включение цепей напряжения и тока; диаметр отверстий зажимов для этих цепей должен быть не менее 3,5 мм.

Средний срок службы до первого капитального ремонта и средняя наработка до отказа у статических счетчиков примерно такие же, что и у индукционных счетчиков. Например, для электронного счетчика непосредственного включения типа СЭТ4-1 (5-60)А эти значения соответственно составляют 24 года и 55 000 ч.

На рис. 8, а в качестве примера приведена схема непосредственного подключения счетчика типа СЭТ к четырехпроходной трехфазной сети.

В однотарифных счетчиках типа СЭТ4-1 цепь управления состоянием счетных механизмов (цепь переключения тарифов) не используется и зажим 14 на схеме рис. 8, а не устанавливается.

Выходные каскады основного и поверочного выходов счетчика реализованы на транзисторах с «открытыми» коллекторами.

К выходным устройствам электронных счетчиков относятся:

испытательный выход – устройство, которое может быть использовано для испытания счетчика;

индикатор функционирования – устройство, выдающее визуально наблюдаемый сигнал функционирования счетчика;

запоминающее устройство – элемент, предназначенный для хранения цифровой информации;

энергонезависимое запоминающее устройство – запоминающее устройство, которое может сохранять информацию при отключении источника питания.

Для обеспечения функционирования выходных каскадов необходимо подать напряжение по схеме рис. 8, б на зажимы 2 и 13

Рис. 8. Схема непосредственного подключения счетчика типа СЭТ к четырех-проводной трехфазной сети: а – схема подключения; б – схема подключения устройства переключения тарифов

к счетчику

основного выхода (передающего устройства) и зажимы 1 и 13 поверочного выхода.

В отличие от индукционных электронные счетчики имеют на щитке световую индикацию, а именно:

индикатор СЕТЬ, сигнализирующий о включении счетчика в сеть (при подаче в цепи напряжения счетчика фазных напряжений 220 В индикатор СЕТЬ должен постоянно светиться);

индикаторы А и В, сигнализирующие о включении нагрузки, которые должны мигать с частотой, пропорциональной мощности потребителя в нагрузках (при отсутствии тока нагрузки индикаторы А и В находятся в произвольном состоянии, т. е. могут светиться или не светиться);

индикатор ТАРИФ II (тариф ночного времени) у двухтарифного счетчика, сигнализирующий о наличии на зажимах 13 и 14 счетчика сигнала управления, который должен осуществлять перевод счетного механизма второго тарифа (ТАРИФ II) в «активное» состояние, а счетного механизма первого тарифа – в «пассивное» состояние.

Расход электроэнергии учитывается непосредственно в киловатт-часах по шести цифрам барабанчиков, расположенных в окне щитка.

В табл. 9 приведены технические характеристики трехфазных электронных счетчиков, серийно выпускаемых ОАО «Мытищинский электротехнический завод» (№ 1-8) и ABB ВЭИ Метроника, г. Москва (№ 9-12).

В прил. 7 приведена маркировка щитков электронных счетчиков (по ГОСТ 30207-94).

Таблица 9

Счетчики трехфазные электронные

На предприятиях (в организациях) часто возникает необходимость определения присоединенной мощности (нагрузки) в разные периоды суток, как правило, в часы максимума или минимума нагрузок энергосистемы. К сожалению, в этих случаях иногда электротехнический персонал предприятий (организаций) испытывает определенные трудности, вплоть до того, что использует для этой цели электроизмерительные клещи с последующим расчетом мощности, несмотря на то что в договоре энергоснабжения отмечено, что для этой цели необходимо использовать счетчик активной энергии.

Измерение нагрузки можно осуществить при помощи счетчика активной энергии и секундомера следующим образом.

В момент появления на диске счетчика фиксированной черты следует включить секундомер и после некоторого числа n полных оборотов диска счетчика секундомер надо остановить. Затем в зависимости от значений постоянной счетчика С и его передаточного числа А производят подсчет мощности по формулам, указанным в табл. 10.

Таблица 10

Формулы для подсчета мощности по счетчику c помощью секундомера

Примечание. В таблице t – время, показанное секундомером, с.

Пример. На предприятии на двух фидерах установлены расчетные приборы учета, питающиеся от трансформаторов:

1– й фидер. Трансформатор мощностью 630 кВ-А с измерительными ТТ 100/5 А и ТН 10 000/100 В. Установлен трансформаторный счетчик, отградуированный на ТТ 75/5 А и ТН 6000/100 В, на щитке которого обозначено 1 кВт-ч = 25 оборотов диска.

2– й фидер. Трансформатор мощностью 400 кВ-А с измерительными ТТ 50/5 А и ТН 6000/100 В. Установлен универсальный счетчик, на щитке которого написано 3x5 А 6000/100 В, 1 оборот диска = = 10 Вт-ч.

Определить нагрузку по каждому фидеру и общую нагрузку предприятия.

Решение.

1. Измеряем секундомером время t полных оборотов n диска 1-го счетчика. Предположим, что замеры показали:

t = 5 с при n = 6 полных оборотов диска.

2. Поскольку счетчик является трансформаторным, подключенным к измерительным ТТ и ТН с другими значениями коэффициентов трансформации, то необходимо определить перерасчетный коэффициент Кпр, который будет равен произведению двух отношений: коэффициентов трансформаторов тока фактически установленного и счетчика, и коэффициентов трансформаторов напряжения фактически установленного и счетчика, т. е.

В нашем случае

3. Так как на щитке счетчика обозначено 1 кВт-ч = 25 оборотов диска, то по формуле (56) определяем мощность, показанную счетчиком:

4. С учетом перерасчетного коэффициента Kпр фактическая мощность по 1-му фидеру составит:

5. Определяем мощность, показанную счетчиком по 2-му фидеру, используя для наших условий задачи формулу (58):

где измеренные значения по секундомеру n = полный оборот диска при t = 50 с.

6. Фактическая нагрузка по 2-му фидеру с учетом коэффициентов измерительных ТТ и ТН составит:

7. Таким образом, в данный период суток нагрузка предприятия по 1-му фидеру составляет 384 кВт, по 2-му фидеру – 216 кВт, а общая нагрузка будет равна:

?Р = Pl + P2 = 384 + 216 = 600 кВт

Правильный подсчет мощности (нагрузки) и умение пользоваться расчетными коэффициентами средств учета (электросчетчиков и измерительных трансформаторов) не позволит допустить переплату за потребляемую электроэнергию и обеспечит надежный контроль за договорными значениями присоединенной мощности.

В соответствии с требованиями ПТЭЭП наблюдение за работой средств учета электрической энергии на электрических подстанциях (в распределительных устройствах) должен вести оперативный или оперативно-ремонтный персонал.

Ответственность за сохранность и чистоту средств измерений и учета электрической энергии несет персонал, обслуживающий оборудование, на котором они установлены.

Установку и замену измерительных трансформаторов тока и напряжения, к вторичным цепям которых подключены расчетные счетчики, выполняет персонал эксплуатирующего его потребителя с разрешения энергоснабжающей организации.

Замену и поверку расчетных счетчиков, по которым осуществляется расчет с энергоснабжающей организацией, производит собственник приборов учета по согласованию с энергоснабжающей организацией.

Персонал энергообъекта в соответствии с требованиями ПТЭЭП несет ответственность за сохранность расчетного счетчика, его пломб и за соответствие цепей учета электроэнергии установленным требованиям. Нарушение пломбы на расчетном счетчике, если это не вызвано действием непреодолимой силы, лишает законной силы учет электроэнергии, осуществляемый данным расчетным счетчиком.

Для защиты от несанкционированного доступа к электроизмерительным приборам, коммутационным аппаратам и разъемным соединениям электрических цепей должно производиться их маркирование в цепях учета специальными знаками визуального контроля в соответствии с установленными требованиями.

Вопросам учета потребления электрической энергии в эпоху рыночных взаимоотношений стали уделять повышенное внимание, поскольку достоверность и точность информации о выработке и потреблении электроэнергии решает целый комплекс насущных проблем в электроэнергетике, в том числе вопросы энергосбережения, снижения оплаты за потребляемую электроэнергию, выбора рациональных режимов работы электроустановок, достоверности определения потерь электроэнергии в сетях и другие важные вопросы.

Данный текст является ознакомительным фрагментом.