1.2. Принципы построения бестрансформаторных источников питания

We use cookies. Read the Privacy and Cookie Policy

1.2. Принципы построения бестрансформаторных источников питания

Прежде чем перейти к обсуждению практических схем источников питания рассмотрим несколько возможных вариантов построения отдельных функциональных узлов импульсных источников питания. Это позволит читателям лучше понять, почему при проектировании реальных схем предпочтение отдается тому или иному схемотехническому решению.

1.2.1. Автогенераторные каскады ВЧ преобразователей

Как видно из рисунков структурных схем ИБП (см. рис. 1.1 и 1.2) основным узлом, обязательно входящим в состав каждого подобного источника питания, является ВЧ преобразователь. Его назначение состоит в формировании на обмотке трансформатора из выпрямленного напряжения первичной сети импульсного напряжения требуемой формы. Вид получаемого импульсного напряжения определяется типом используемого трансформатора, с помощью которого происходит передача энергии в нагрузку и обеспечивается гальваническая развязка от источника первичного напряжения. Собственно группа элементов формирователя напряжения специальной формы вместе с трансформатором и составляют ВЧ преобразователь. Его параметры и надежность работы являются определяющим фактором функционирования источника питания и, конечно, блоков нагрузки. Работа всех ИБП основана на том же принципе преобразования энергии, а схемотехнические решения различаются способами подключения ВЧ трансформаторов к активной части преобразователей и методами стабилизации выходного напряжения.

В данной книге рассмотрены преобразователи напряжения первичной сети 220 В, 50 Гц с номинальной мощностью до 500 Вт, поэтому особое внимание при описании ВЧ преобразователей уделено применению высоковольтных активных компонентов – транзисторов и диодов, – элементов для фильтрации выпрямленного напряжения, а также критериям их подбора для использования в импульсных источниках питания.

В настоящее время в ИБП применяются два основных типа ВЧ преобразователей – одно– и двухтактные. Оба типа используются как в схемах с автогенератором на силовых элементах (транзисторах), так и в схемах с внешним управлением. Во втором случае силовые активные элементы работают в режиме усилителей мощности.

Пример силового каскада, выполненного по автогенераторной схеме, представлен на рис. 1.3.

Рис. 1.3. Схема однотактного автогенераторного преобразователя с обратным включением диода

Каскад выполнен на транзисторе по схеме релаксационного импульсного генератора. Схема содержит один трансформатор TV, на котором размещены все обмотки. Входное напряжение питания Uп поступает на коллектор транзистора VT через первичную обмотку W1 трансформатора TV. Сигнал обратной связи подается на базу транзистора VT с обмотки W3. Начало каждой обмотки обозначено точкой. Ко вторичной обмотке W2 последовательно подключены выпрямительный диод VD, конденсатор С и условная нагрузка Кн. Важной особенностью выполнения однотактных преобразователей является способ подключения выпрямительного диода во вторичной цепи. Способ подключения диода, согласно рис. 1.3, называется обратным, так как диод VD открывается при закрытом транзисторе VT и закрывается при открывании транзистора VT. Ток коллектора транзистора VT при этом имеет форму, показанную на рис. 1.4.

Рис. 1.4. Форма тока коллектора транзистора в схеме автогенераторного преобразователя с обратным включением диода

Автогенераторный преобразователь работает следующим образом. В начальный момент времени при подаче напряжения питания Uп на схему через резистор Ксм на базу транзистора VT поступает отпирающий положительный потенциал. Транзистор начинает открываться, через него и первичную обмотку W1 трансформатора TV протекает нарастающий ток, который вызывает увеличение магнитного потока в сердечнике трансформатора. При этом в обмотке обратной связи W3 наводится ЭДС самоиндукции. Обмотки W1 и W3 подключаются к элементам схемы таким образом, что наведенная в обмотке W3 ЭДС способствует отпиранию транзистора VT. Резистор Rб определяет ток, протекающий через базовый переход транзистора VT. Когда ток коллектора транзистора VT достигает максимального значения, нарастание магнитного потока в сердечнике трансформатора TV прекращается. Полярность напряжения на обмотке обратной связи W3 меняется на противоположную, и транзистор VT запирается.

В зависимости от полярности подключения выпрямительного диода VD во вторичной цепи изменяется способ передачи энергии в нагрузку. В ВЧ преобразователе, собранном согласно рис. 1.3, при открытом транзисторе VT к первичной обмотке приложено напряжение Uп – Uк.нас. Во вторичную обмотку происходит передача импульса длительностью tи (см. рис. 1.4.). В этот момент положительное напряжение оказывается приложенным к закрытому диоду VD, который отключает вторичную обмотку от нагрузки.

В течение времени tп (время паузы), то есть когда транзистор VT закрыт, полярность напряжения во всех обмотках меняется на противоположную, диод VD открывается и напряжение с обмотки W2 поступает на фильтр (конденсатор С) и нагрузку, при этом конденсатор С заряжается. Конденсатором С накапливается энергия, расходуемая во время следующего цикла, когда транзистор снова открывается, а выпрямляющий диод VD запирается. Таким образом обеспечивается протекание через нагрузку постоянного тока. Сглаживающий фильтр образуется конденсатором C и индуктивностью вторичной обмотки W2 трансформатора TV.

На рис. 1.5 представлена схема подключения нагрузки с прямым включением выпрямительного диода (рис. 1.5а) и форма коллекторного тока (рис. 1.5б), соответствующая данной схеме.

Рис. 1.5. Схема включения нагрузки с прямым включением диода (а) и форма тока коллектора транзистора преобразователя (б)

В схеме (см. рис. 1.5а) энергия передается в нагрузку синхронно с открыванием силового транзистора – интервал tи (см. рис. 1.5б).

Эквивалентные схемы, поясняющие процессы, протекающие в каскаде с прямым включением диода, изображены на рис. 1.6.

Рис. 1.6. Эквивалентные схемы вторичной цепи каскада с прямым включением диода

На рис. 1.6 транзистор представлен в виде ключа SW1, который включается и выключается в определенные моменты времени (стрелками указано направление протекания тока).

В момент открывания транзистора и передачи энергии во вторичную цепь (как показано на эквивалентной схеме рис. 1.6а, где LC фильтр и нагрузка подключены к источнику напряжения Uп) ток Iн, протекая в нагрузку Rн через дроссель Lф, входящий в состав фильтра, запасает в нем энергию. Величину накопленной энергии можно вычислить по формуле:

W = 0,5 Lф Iн2 tи

Конденсатор сглаживающего фильтра C в течение действия импульса tи (при замкнутом ключе SW1) заряжается до напряжения Uн.

Во время паузы tп, когда энергия от первичного источника не подается (см. рис. 1.6б, ключ SW1 разомкнут), запасенная в дросселе Lф энергия поступает в нагрузку Rн. Замкнутый контур (протекание тока нагрузки Iн) образуется цепью из дросселя Lф (нагрузки Rн) блокирующего диода VD2.

Длительности импульсов (времени открытого состояния силового транзистора) и пауз в однотактных преобразователях определяются напряжением питания сети, индуктивными параметрами обмоток высокочастотного трансформатора и могут быть рассчитаны по формулам:

tи = Ik max L1 / Uп (1.1)

tп = Ik max L2W1 / UнW2  (1.2)

Из приведенных соотношений видно, что в общем случае длительности импульса tи и паузы tп не равны. В течение всего цикла работы ВЧ преобразователя через обмотки трансформатора в противоположных направлениях протекают токи, которые воздействуют на сердечник трансформатора, перемагничивая его. Так как длительности действия импульса и паузы не совпадают, не происходит и полной взаимной компенсации магнитных потоков, и сердечник постепенно намагничивается посредством наиболее длительного сигнала. Снижаются его магнитная проницаемость, уменьшается индуктивность трансформатора, эффективность работы преобразователя падает. В этом случае нужно применять либо магнитопроводы с заведомо увеличенной мощностью рассеяния, что приведет к неоправданному возрастанию габаритов источника питания, либо, что более правильно, специальные меры по устранению или компенсации эффекта подмагничивания.

На практике используется несколько вариантов принудительного компенсационного подмагничивания сердечника с помощью технологических приемов или дополнительно установленных элементов. Одним из способов является выполнение сердечника трансформатора на магнитопроводе с небольшим воздушным зазором. Однако это не всегда удобно и технологично, особенно в трансформаторах на кольцевых сердечниках. В качестве элемента для дополнительного перемагничивания может служить блокировочный конденсатор, устанавливаемый параллельно первичной обмотке трансформатора. Во время паузы, когда транзистор закрывается, конденсатор постепенно разряжается через первичную обмотку трансформатора. Разрядный ток создает магнитный поток, который перемагничивает сердечник. Величина этого конденсатора должна быть такой, чтобы длительность паузы составляла не менее четверти периода колебаний контура, образованного индуктивностью первичной обмотки трансформатора L1 и емкостью блокировочного конденсатора Сбл.

В преобразователях с прямым включением диода для устранения намагничивания сердечника трансформатора может быть использована дополнительная цепь, состоящая из диода и обмотки, намотанной на тот же сердечник. Фрагмент принципиальной схемы силовой цепи такого ВЧ преобразователя представлен на рис. 1.7.

Рис. 1.7. Схема силового каскада ВЧ преобразователя с размагничивающей обмоткой силового трансформатора

В данном случае размагничивающая обмотка включена последовательно с диодом VD3. Обязательно обратите внимание на ее подключение к элементам схемы, обозначенное точками у начала обмотки.

В момент закрывания силового транзистора часть накопленной в трансформаторе энергии возвращается в источник питания через диод VD3. Величина тока, проходящего через возвратный диод VD3, обратно пропорциональна числу витков подключенной к нему компенсационной обмотки. Поэтому для снижения импульсного тока, протекающего через этот диод, можно увеличивать число ее витков. Однако при этом должно выполняться следующее соотношение чисел витков компенсационной и коллекторной обмоток:

W12 / W11 ? tп / tи (1.3)

Завершая описание и сравнение схем однотактных преобразователей с прямым и обратным включением выпрямительного диода в цепи нагрузки, приведем выражение для определения величин соответственно максимального импульсного тока коллектора Iки силового транзистора и тока, протекающего через первичную обмотку импульсного трансформатора. Для преобразователя с прямым включением диода оно имеет вид:

Максимальный импульсный ток транзистора для каскада с обратным включением диода рассчитывают по соотношению:

Коэффициенты в приведенных формулах имеют следующие значения:

?max – коэффициент заполнения; определяет степень использования транзистора по току и вычисляется по формуле:

?п – КПД преобразователя;

Uп – напряжение питания преобразователя;

Pн – мощность, выделяемая в нагрузке.

Из приведенных соотношений видно, что величины токов в преобразователях отличаются практически в два раза. Это предъявляет более жесткие требования к подбору транзисторов для источника питания с обратным включением диода. Сечение провода первичной обмотки трансформатора также должно быть различным. Следует отметить, что выбросы коллекторного напряжения на силовом транзисторе с индуктивной нагрузкой (в данном случае – первичной обмоткой импульсного трансформатора) могут достигать значения 4Uп. Для устранения перенапряжения на коллекторе транзистора в схемы вводятся дополнительные защитные (демпфирующие) цепи. Граничные параметры по максимальным значениям импульсного тока и напряжения на коллекторе транзистора являются определяющими при подборе элементов для замены неисправных.

Передача энергии в нагрузку (или ее накопление) в однотактных преобразователях производится только в течение интервала времени tи – открытого состояния силового транзистора. Более равномерное поступление энергии обеспечивают двухтактные преобразователи. Рассмотрим принципы их функционирования на примерах автогенераторных схем с насыщающимся трансформатором питания и переключающим трансформатором.

Схема двухтактного преобразователя с насыщающимся трансформатором представлена на рис. 1.8. Силовой каскад образуют два транзистора VT1 и VT2, трансформатор TV и элементы смещения – резисторы Rсм и Rб. Обмотки трансформатора Wб1 и Wб2 включены в базовые цепи транзисторов. Коллекторы транзисторов подсоединены к положительному полюсу источника питания через обмотки Wк, что определяется только типом проводимости транзисторов, используемых в данном примере. Вторичная цепь образована двумя бифилярно намотанными обмотками W2 и W2', нагруженными на двухполупериодный выпрямитель (диоды VD1 и VD2), к которому подключены конденсатор фильтра С и условное сопротивление нагрузки Rн.

Рис. 1.8. Схема двухтактного преобразователя с насыщающимся трансформатором

Для нормальной работы преобразователя (см. рис. 1.8) сердечник трансформатора должен быть выполнен из материала с прямоугольной петлей гистерезиса (пермаллой, термостабильный феррит). Обмотки трансформатора TV включаются таким образом, чтобы обеспечивать положительную обратную связь и поддерживать режим автоколебаний. Поэтому начала обмоток на рис. 1.8 обозначены точками. Работа автогенератора начинается после подачи на него напряжения питания. Из-за различия характеристик транзисторов в начальный момент времени один из них начинает открываться, в данном случае пусть это будет транзистор VT1. Через транзистор VT1 и, следовательно, через обмотку Wк1 начинает протекать ток. При этом во всех обмотках трансформатора TV наводится ЭДС, полярность которой определяется направлением их намотки. Полярность ЭДС, наводимой в обмотках Wб1 и Wк1 совпадает, и наведенная в обмотке Wб1 ЭДС полностью открывает транзистор VT1. Транзистор VT2 при этом закрывается. Данный процесс продолжается до насыщения сердечника, после чего наведенная в обмотках ЭДС уменьшается до нуля и меняет свою полярность. Теперь закрывается транзистор VT1, а VT2 начинает открываться. Процесс продолжается до момента, когда VT2 полностью откроется, а VT1 – закроется, после чего цикл повторяется. Таким образом, напряжение питания поочередно оказывается приложенным то к обмотке Wк1, то к Wк2. На вторичной обмотке трансформатора формируется переменный сигнал из прямоугольных импульсов, которые после выпрямления поступают в нагрузку. При открытом транзисторе VT1 полярность вторичного напряжения должна быть такова, чтобы диод VD2 оказывался смещенным в прямом направлении, а диод VD1 – в обратном. Через диод VD2 протекает ток, которым заряжается конденсатор фильтра C. После закрытия транзистора VT1 и открытия VT2 на вторичной обмотке полярность напряжения меняется и в этом случае диоды выпрямителя VD1 и VD2 также меняют свое состояние на противоположное. Диод VD2 оказывается запертым, а диод VD1 – открытым. Теперь конденсатор заряжается током, протекающим через диод VD1. Таким образом, при использовании двухтактного преобразователя и двухполупериодного выпрямителя поступление энергии во вторичную цепь происходит равномерно в течение всего цикла работы преобразователя.

Данный текст является ознакомительным фрагментом.