4.16. ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЭ
4.16. ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЭ
Требования, связанные с обеспечением эффективного и надежного функционирования такой огромной по сложности и условиям работы системы, каковой является ЕЭС, по результатам ее эксплуатации привели к необходимости создания в рамках ТЭ специфических разделов, связанных с расчетом установившихся и переходных процессов в электрических цепях высокой степени сложности в режиме реального времени в условиях переменности их структуры. В этих условиях воссоздание действительной картины соединений элементов ЕЭС и на этой основе адекватное моделирование распределения напряжений, токов и потоков мощностей при неопределенности исходных данных для расчетов превратились в сложную теоретическую проблему. Такая неопределенность является следствием ограниченной пропускной способности, точности и надежности телекоммуникационных каналов связи, по данным которых приходится воссоздавать структуру соединений ЕЭС и параметры ее элементов. Конфигурация ЕЭС и в этой связи распределение напряжений и токов практически меняются непрерывно, что снижает эффективность работы ЕЭС, если заданное распределение потоков мощностей отлично от реального. Снижение будет иметь место из-за неточности и неполноты информации о состоянии системы, поскольку вычисленные по ним структура и параметры модели не будут соответствовать ЕЭС. Специфичность этой проблемы с точки зрения ТЭ заключается в создании теории и методов адаптивных моделей сложной электрической цепи в процессе непрерывного изменения ее структуры, параметров и результатов диагностирования. В решение этой проблемы большой вклад внесли Ю.Н. Руденко, А.З. Гамм, М.И. Розанов и другие ученые.
Расширение сферы применения ЭВМ наряду с созданием и использованием баз данных с элементами искусственного интеллекта будет превалирующим и определит развитие ТЭ в XXI в. Тенденция улучшения показателей ЭВМ показывает, что следует ожидать дальнейшей миниатюризации вычислительной техники одновременно с резким повышением ее вычислительных возможностей. Вследствие этого уже в начале следующего века произойдет широкая интеграция вычислительных средств непосредственно с электротехническими устройствами, что резко изменит условия их проектирования, расчета и эксплуатации. С учетом этих тенденций в дальнейшем наиболее актуальным будет развитие создаваемой в настоящее время теории адаптивных электродинамических систем, поскольку именно таковыми будут электротехнические устройства следующего поколения, и для создания таких устройств будет необходимо дальнейшее развитие соответствующей теоретической базы. Перспективное оборудование, в том числе электротехническое и энергетическое, с интегрированием информационной и вычислительной техники должно будет производить самодиагностику состояния и параметров эксплуатируемого устройства, определять допустимые пределы воздействующих на него усилий и осуществлять управление ими. Для устройств со сложными математическими моделями диагностические эксперименты в рабочем режиме всегда будут неполными. По этой причине для диагностирования и прогнозирования состояния системы придется воспользоваться выводами и данными, полученными при прошлых измерениях и использовать их в качестве дополнительных к информации, получаемой при помощи текущей диагностики, для восполнения недостающих данных.
Приведенные выше соображения о роли использования в ТЭ новых методов обработки информации, развитии новых методов анализа и расчета систем с интегрированными элементами вычислительной техники и искусственного интеллекта необходимы только при условии организации в стране проектирования и производства высокотехнологичных изделий. Опыт развития страны в прошлом свидетельствует о том, что только при целенаправленном комплексном развитии экономики создаются условия для развития науки, а следовательно и техники, и подготовки кадров.
СПИСОК ЛИТЕРАТУРЫ
4.1. Ампер А. Электродинамика. Изд-во. АН СССР, 1954.
4.2. Анго А. Математика для электро- и радиоинженеров. М.: Наука, 1957.
4.3 Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959.
4.4. Атабеков Г.И. Теория линейных электрических цепей. М.: Сов. радио, 1960.
4.5. Балабанян Н. Синтез электрических цепей. М.: Госэнергоиздат, 1958.
4.6. Бальчитис А.А. Емкостная подобласть индукционных процессов преобразования потоков энергии. Вильнюс: Минтис, 1973.
4.7. Bashkow T.R. The a matrix-new network description // IRE Trans. 1957. Vol. CT-4. № 2.
4.8. Беллерт Т.С., Возняцки Г. Анализ и синтез электрических цепей методом структурных чисел. М.: Мир, 1972.
4.9. Берг А.И. Избранные труды. М. — Л.: Энергия, 1964.
4.10. Бессонов А.А. Теоретические основы электротехники. Ч. 1, 2. М.: Высшая школа, 1996.
4.11. Боде Г. Теория цепей и преобразование усилителей с обратной связью. Изд-во иностр. лит., 1948.
4.12. Боргман И.И. Основания учения об электрических и магнитных явлениях. СПб.: Изд-во К.Л. Риккерт, 1914.
4.13. Булгаков Б.В. Колебания. М.: Гостехиздат, 1954.
4.14. Важное А.И. Электрические машины. Л.: Энергия, 1968.
4.15. Ван-дер-Поль Б. Нелинейная теория электрических колебаний. М.: Связьиздат, 1935.
4.16. Wang K.T. On a new method for the analysis of electrical networks // Nath Res Ins for En-ginering, Academia Sinia Memor. 1934. № 2.
4.17. Веников В.А. Применение теории подобия и физического моделирования в электротехнике. М.: Госэнергоиздат, 1949.
4.18. Электромагнитные процессы в торцевых частях электрических машин / А.И. Вольдек, Я.Б. Данилевич, В.П. Косачевский, В.И. Яковлев. Л.: Энергоатомиздат, 1983.
4.19. Воронов Р.А. Общая теория четырехполюсников и многополюсников. Киев: Изд-во АН УССР, 1955.
4.20. Неразрушающий контроль качества изделий электромагнитными методами / В.Г. Герасимов, Ю.Я. Останин, А.Д. Покровский. М.: Энергия, 1978.
4.21. Гиллемин Е.А. Синтез пассивных цепей. М.: Связь, 1970.
4.22. Глебов И.А. Диагностика турбогенераторов. Л.: Наука, 1989.
4.23. Глебов И.А. Системы возбуждения мощных синхронных машин. Л.: Наука, 1979.
4.24. Глинтерник С.Р. Электромагнитные процессы и режимы мощных статических преобразователей. Л.: Наука, 1970.
4.25. Гринберг Г.А. Избранные вопросы теории электрических и магнитных явлений. М.: Изд-во АН СССР, 1948.
4.26. Горев А.А. Переходные процессы в синхронных машинах. Л.: Энергия, 1979.
4.27. Электромагнитные поля в электрических машинах. / Я.Б. Данилевич и др. Л.: Энергия, 1979.
4.28. Данилевич Я.Б. Численные методы анализа электрических машин. Л.: Энергоатомиздат, 1988.
4.29. Данилов Л.В. Ряды Вольтерра — Пикара в теории нелинейных электрических цепей. М.: Радио и связь, 1987.
4.30. Данилов Л.В., Матханов П.Н., Филиппов Е.С. Теория нелинейных электрических цепей. Л.: Энергоатомиздат, 1990.
4.31. Демирчян К.С. Моделирование магнитных полей. Л.: Энергия, 1974.
4.32. Демирчян К.С, Бутырин П.А. Моделирование и машинный расчет электрических цепей. М.: Высшая школа, 1988.
4.33. Демирчян К.С, Чечурин В.Л. Машинные расчеты электромагнитных полей. М.: Энергоатомиздат, 1986.
4.34. Демирчян К.С, Кузнецов И.Ф., Воронин В.Н. Поверхностный эффект в электроэнергетических устройствах. Л.: Наука, 1983.
4.35. Дирак П. Лекции по квантовой теории поля. М.: Мир, 1971.
4.36. Доливо-Добровольский М.О. Избранные труды. М. — Л.: Госэнергоиздат, 1948.
4.37. Жданов П. С. Вопросы устойчивости электрических систем. М.: Энергия, 1979.
4.38. Заде Л., Дезоер Ч. Теория линейных систем. М.: Наука, 1970.
4.39. Зелях Э.В. Основы теории электрических схем. М.: Изд-во АН СССР, 1951.
4.40. Иванов-Смоленский А.В. Электромагнитные поля и процессы в электрических машинах и их моделирование. М.: Энергия, 1969.
4.41. Теоретические основы электротехники / П.А. Ионкин, А.И. Даревский, Е.С. Кухаркин, В.Г. Миронов, Н.А. Мельников. Т. 1,2. М.: Высшая школа, 1976.
4.42. Ионкин П.А., Миронов В.Г. Синтез RC-схем с активными невзаимными элементами. М.: Энергия, 1976.
4.43. Синтез линейных электрических и электронных цепей методом переменных состояния / П.А. Ионкин, Н.Г. Максимович, В.Г. Миронов, Ю.С. Перфильев, П.Г. Стахиев. Львов: Вища школа, 1982.
4.44. Иосифьян А.Г. Вопросы электромеханики. М.: Энергия, 1975.
4.45. Калахан Д.А. Современный синтез цепей. М.: Энергия, 1966.
4.46. Кирхгоф Г.Р. Избранные труды. М.: Наука, 1988.
4.47. Костенко М.П., Нейман Л.Р., Блавдзевич Г.Р. Электромагнитные процессы в системах с мощными выпрямительными установками. М.-Л.: Изд-во АН СССР, 1946.
4.48. Крон Г. Применение тензорного анализа в электротехнике. М.: Госэнергоиздат, 1955.
4.49. Крон Г. Исследование сложных систем по частям. М.: Наука, 1972.
4.50. Круг К.А. Переходные процессы в линейных цепях. М.—Л.: Госэнергоиздат, 1948.
4.51. Круг К.А. Основы электротехники. М.: СИЛА, 1916.
4.52. Ландау Л.Д. Собрание трудов. М.: Наука, 1969.
4.53. Ланнэ А.А. Нелинейные динамические системы: синтез, оптимизация, идентификация. Л.: Военная академия связи, 1985.
4.54. Ланнэ А.А. Оптимальный синтез линейных электронных схем. М.: Связь, 1978.
4.55. Лачинов Д.А. Электромеханическая работа // Электричество. 1980. № 1,2.
4.56. Лебедев С.А., Жданов П.С. Устойчивость параллельной работы. М.: Госэнергоиздат, 1934, 1937.
4.57. Ленц Э.Х. Избранные труды. М.: Изд-во АН СССР, 1950.
4.58. Максвелл Д.К. Избранные сочинения по теории электромагнитного поля. М.: Гостехиздат, 1954.
4.59. Мандельштам Л.И. Полное собрание трудов. М.: Изд-во АН СССР, 1947.
4.60. Матханов П.Н. Основы электрических цепей. Линейные цепи. М.: Высшая школа, 1981.
4.61. Миллях А.Н., Шидловский А.И., Кузнецов А.Г. Схемы симметрирования однофазных нагрузок в трехфазных цепях. Киев: Наукова думка, 1973.
4.62. Методы расчета электрических полей / Н.Н. Миролюбов, М.В. Костенко, М.Л. Ле-винштейн, Н.И. Тиходеев. М., 1963.
4.63. Миронов В.Г. Кузовкин В.А., Казанцев Ю.А. Моделирование на ЭВМ режимов в нелинейных цепях. М.: Изд-во МЭИ, 1990.
4.64. Миронов В.Г., Кузовкин В.Г., Казанцев Ю.А. Машинный расчет характеристик аналоговых и дискретных цепей М.: Изд-во МЭИ, 1990.
4.65. Миткевич В.Ф. Физические основы электротехники. М.: Госиздат, 1928.
4.66. Миткевич В.Ф. Курс переменных токов. СПб.: Политехнический ин-т, 1907.
4.67. Миткевич В.Ф. Магнитный поток и его преобразование. М.: Изд-во АН СССР, 1946.
4.68. Миткевич В.Ф. Магнетизм и электричество. 1912.
4.69. Миткевич В.Ф. Физические основы электротехники, 1928.
4.70. Динамика непрерывных линейных систем с детерминированными и случайными параметрами / Ф.А. Михайлов, Е.Д. Теряев, В.П. Булеков и др. М.: Наука, 1971.
4.71. Нейман Л.Р. Поверхностный эффект в ферромагнетиках. Л.: Госэнергоиздат. 1949.
4.72. Нейман Л.Р., Калантаров П.Л. Теоретические основы электротехники. Л. — М.: Госэнергоиздат, 1948.
4.73. Электропередача постоянного тока как элемент энергетических систем / Л.Р. Нейман, С.Р. Глинтерник, А.В. Емельянов и др. М.-Л.: Энергия, 1962.
4.74. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники. Л., 1981.
4.75. Нетушил А.В., Поливанов К.М. Теория электромагнитного поля. М.-Л.: Госэнергоиздат, 1956.
4.76. Папалекси Н.Д. Собрание трудов. М.: Изд-во АН СССР, 1948.
4.77. Поливанов К.М. Развитие теоретической электротехники // Очерки по истории энергетической техники СССР. М.: Госэнергоиздат, 1956. Вып. 19.
4.78. Поливанов К.М. Электростатика. М., 1947.
4.79. Поливанов К.М. Теоретические основы электротехники. М.: Энергия, 1972.
4.80. Поливанов К.М. Электродинамика вещественных сред. М.: Энергоатомиздат, 1988.
4.81. Попов А.С. Прибор для обнаружения и регистрации электрических колебаний в атмосфере // Электричество. 1896. № 13–14.
4.82. Поссе А.В. Схемы и режимы электропередач постоянного тока. Л.: Энергия, 1973.
4.83. Пухов Г.Е. Дифференциальные преобразования функций и уравнений. Киев: Наукова думка, 1980.
4.84. Ракитский Ю.В., Устинов СМ., Черноруцкий И.Г. Численные методы решения жестких систем. М.: Наука, 1979.
4.85. Rohrer R. Circuit Theory: An Introduction to the State Variable Approach to Network Theory. New York.: Mc.Graw Hill Book Company, 1969.
4.86. Рюденберг Р. Эксплуатационные режимы электроэнергетических систем. Л.: Энергия, 1981.
4.87. Сигорский В.П., Петренко А.И. Алгоритмы анализа электронных схем. М.: Сов. радио, 1976.
4.88. Синицкий Л.А. Элементы качественной теории нелинейных электрических цепей. Львов: Вища школа, 1975.
4.89. Сиротинский Л.И. Волновые процессы и внутренние перенапряжения в электрических системах. М.-Л.: Госэнергоиздат, 1959.
4.90. Смайт В. Электростатика и электродинамика М.: Изд-во иностр. лит., 1954.
4.91. Смуров А.А. Электротехника высокого напряжения и передача электрической энергии. М.-Л.: Гостехиздат, 1932.
4.92. Steinmetz C.P. Theorie und Rerechnung der Wechselstrom erscheinung. Berlin, 1900.
4.93. Стокер Дж. Нелинейные колебания в электрических системах. М.: Изд-во иностр. лит., 1952.
4.94. Столетов А.Г. Собрания сочинений. Т. 1. М.-Л.: Гостехиздат, 1948.
4.95. Стреттон Д.А. Теория электромагнетизма. Гостехиздат, 1948.
4.96. Тамм И.Е. Основы теории электричества. М.-Л.: Гостехиздат, 1932.
4.97. Тафт В.А. Вопросы теории электрических цепей с переменными параметрами и синтеза импульсных и цифровых автоматических регуляторов. М.: Изд-во АН СССР, 1960.
4.98. Tellegen B.D.H. A General Network Theorem with Applications // Phillips Res. Rept. 1952. №7.
4.99. Толстое Ю.Г. Теория электрических цепей. М.: Высшая школа, 1971.
4.100. Тозони О.В. Метод вторичных источников в электротехнике. М.: Энергия, 1975.
4.101. Трохименко Я.К. Метод обобщенных чисел и анализ линейных цепей. М.: Сов. радио, 1972.
4.102. Умов Н.А. Уравнения движения энергии. Одесса, 1874, М., 1874.
4.103. Френкель Я.И. Электродинамика. М.-Л.: ОНТИ, 1935.
4.104. Хаяси Т. Нелинейные колебания в физических системах. М.: Мир, 1988.
4.105. Heavisite О. Electromagnetic Theory. London, 1899.
4.106. Цыпкин Я.З. Теория импульсных систем. М.: Физматгиз, 1958.
4.107. Чуа Л., Пен-Мин Лин. Анализ электронных схем. М.: Энергия, 1980.
4.108. Шакиров М.А. Преобразование и диакоптика электрических цепей. Л.: Изд-во Ленингр. гос. университета, 1980.
4.109. Шидловский А.К., Кузнецов В.Г, Николаенко В.Г. Оптимизация несимметричных режимов систем электроснабжения. Киев: Hayкова думка, 1987.
4.110. Шимони К. Теоретическая электротехника. М.: Мир, 1964.
4.111. Эйнштейн А. Собрание научных трудов в 4-х т. М.: Наука, 1965.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Перспективы «Высотной исследовательской программы» («HARP»)
Перспективы «Высотной исследовательской программы» («HARP») 30 июня 1967 года, в результате резкого «похолодания» в отношениях между США и Канадой, вызванного войной во Вьетнаме, канадский Департамент исследований в области вооружений официально объявил о закрытии
Глава VII Перспективы военного применения дирижаблей
Глава VII Перспективы военного применения дирижаблей 1. Применение на сухопутном театреНесмотря на неудачный в общем опыт боевого использования дирижаблей на сухопутном театре во время войны 1914–1918 гг., в данное время есть достаточно оснований считать положение
1.3.5. Перспективы подземной связи
1.3.5. Перспективы подземной связи Подземная связь востребована спелеологами и спасательными службами, поэтому разработка аппаратуры и антенн для подземной связи актуальна. Немаловажным достоинством такой связи является ее доступность – не требуются никакие разрешения
1.4. Перспективы технологии Wi-Fi на разных уровнях
1.4. Перспективы технологии Wi-Fi на разных уровнях На промышленном уровне суперсовременные технологии Wi-Fi предлагаются пока ограниченным числом поставщиков. Так, несколько лет назад компания Siemens Automation & Drives предложила Wi-Fi-решения для своих контроллеров SIMATIC в
Глава 14. Нанодатчики: разработки, перспективы и разнообразие применения
Глава 14. Нанодатчики: разработки, перспективы и разнообразие применения Дэвид Дж. Нагель, Шарон СмитДэвид Дж. Нагель стал ученым лишь в зрелом возрасте, сменив множество занятий. До этого он служил в военно-морском флоте США, дослужившись до звания капитана. Позднее он
15.1.1. Возможные перспективы
15.1.1. Возможные перспективы Ниже описываются некоторые особенности новых материалов и объектов, которые могут служить основой для оценки возможностей применения нанотехнологий, однако читатель должен помнить, что эти технологии переживают сегодня период динамического
Тема ХІІ. БИОТЕХНОЛОГИИ, ИХ СУЩНОСТЬ, ПРОШЛОЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ И ПРИМЕНЕНИЯ
Тема ХІІ. БИОТЕХНОЛОГИИ, ИХ СУЩНОСТЬ, ПРОШЛОЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ И ПРИМЕНЕНИЯ Большинство из наших современников – инженеров-специалистов в какой-то мере готовы ответить на вопрос «технология», «технологический процесс», и могут в первую очередь рассказать о
Тема XIII. ИНЖЕНЕРНАЯ ДЕЯТЕЛЬНОСТЬ И НАНОТЕХНОЛОГИИ: СУЩНОСТЬ, ПЕРСПЕКТИВЫ РАЗВИТИЯ, ЗНАЧЕНИЕ
Тема XIII. ИНЖЕНЕРНАЯ ДЕЯТЕЛЬНОСТЬ И НАНОТЕХНОЛОГИИ: СУЩНОСТЬ, ПЕРСПЕКТИВЫ РАЗВИТИЯ, ЗНАЧЕНИЕ Человечество уверенно вступило в XXI век, который, как мы часто слышим, будет проходить под знаком генетики, биотехнологий и информационных технологий. Мы также слышим, что ученые
Захватывающие перспективы прогресса
Захватывающие перспективы прогресса В нескольких словах «фактор четыре» означает, что производительность ресурсов может и должна увеличиться в четыре раза. Богатство, извлекаемое из одной единицы природных ресурсов, может учетвериться. Таким образом, мы можем жить в
Часть 5 Перспективы и выводы
Часть 5 Перспективы и выводы Книги учат мечтать, фантазировать… А конструктор, помимо всего, должен быть мечтателем. Именно в мечтах рождаются новые идеи, замыслы конструкций… Добиться исполнения мечты — в этом величайший смысл жизни человека, а конструктора
1.8. Перспективы развития и практические вопросы газовой отрасли
1.8. Перспективы развития и практические вопросы газовой отрасли Современные технологии (производства), по возможности, должны быть связаны между собой таким образом, что конечный цикл одного из них становится началом другого цикла, благодаря чему достигается
ПЕРСПЕКТИВЫ Ил- 76МФ
ПЕРСПЕКТИВЫ Ил- 76МФ Сергей ЦВЕТКОВ МоскваНа фоне почти повсеместного упадка в бывшей советской авиапромышленности, даже незначительные успехи выглядят более весомыми, нежели пять (а тем более десять) лет назад. Одно из центральных событий этого года (которое, пожалуй,
Перспективы
Перспективы В настоящее время во многих странах эксплуатируется более полутора тысяч Ми- 2. Многие из них уже порядком изношены и требует ремонта или замены. В связи с тем, что стоимость восстановления Ми-2 на один-два порядка ниже, чем цена на аналогичный зарубежный
11.2.6. РАЗВИТИЕ И ПЕРСПЕКТИВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ
11.2.6. РАЗВИТИЕ И ПЕРСПЕКТИВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ В последние годы усилия специалистов, занятых в силовом полупроводниковом приборостроении, были сосредоточены на исследовании и разработке новых типов СПП, технологических методов и процессов, оснастки, оборудования и
Итоги и перспективы развития космонавтики
Итоги и перспективы развития космонавтики XX век войдет в историю как век революционного развития науки и техники и социалистических преобразований на Земле. Но среди многих выдающихся научных и технических достижений XX века наиболее значительным является освобождение