5.1.3. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ В НАШЕЙ СТРАНЕ

We use cookies. Read the Privacy and Cookie Policy

5.1.3. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ В НАШЕЙ СТРАНЕ

В развитии электроэнергетики можно выделить следующие основные этапы:

соединение электростанций на параллельную работу и образование первых энергосистем;

образование территориальных объединений энергосистем (ОЭС);

создание Единой энергетической системы (ЕЭС);

функционирование электроэнергетики после образования независимых государств на территории бывшего СССР.

Основа создания энергетических систем в нашей стране была заложена Государственным планом электрификации России (ГОЭЛРО), утвержденным в 1920 г. Этот план предусматривал централизацию электроснабжения путем строительства крупных электростанций и электрических сетей с последовательным объединением их в энергетические системы. Планом ГОЭЛРО предусматривалось также всемерное развитие отечественной электротехнической промышленности, освобождение ее от засилья иностранного капитала, удельный вес которого составлял в ней в начале 20-х годов 70%. Для решения всех вопросов электротехники и подготовки высококвалифицированных специалистов в октябре 1921 г. был создан Государственный экспериментальный электротехнический институт, переименованный впоследствии во Всесоюзный электротехнический институт (ВЭИ).

Ведущие члены комиссии ГОЭЛРО (руководитель Г.М. Кржижановский) возглавили проектирование и строительство электростанций и линий электропередачи. Шатурская Государственная районная электростанция (ГРЭС) мощностью 48 тыс. кВт спроектирована и построена (1925 г.) под руководством А.В. Винтера; Волховская (66 тыс. кВт, 1926 г.) и Нижнесвирская ГЭС (90 тыс. кВт, 1927–1933 гг.) — под руководством Г. О. Графтио; Днепровская ГЭС (580 тыс. кВт, 1927–1932 гг.) — под руководством И.Г. Александрова (проект) и А.В. Винтера (строительство). Днепровская ГЭС была в то время наиболее крупной в Европе [5.2; 5.3].

Первые энергосистемы — Московская и Петроградская — были созданы в 1921 г. В 1922 г. в Московской энергосистеме вошла в строй первая линия электропередачи напряжением ПО кВ Каширская ГРЭС — Москва длиной 120 км (строители линии Н.И. Сушкин и А.А. Глазунов), а в 1933 г. была пущена линия электропередачи напряжением 220 кВ Нижнесвирская ГЭС — Ленинград. (Первая линия 220 кВ во Франции была построена всего на полгода раньше.) Были образованы новые энергосистемы: Донбасская (1926 г.), Ивановская (1928 г.), Ростовская (1929 г.) и др. [5.4–5.6].

С созданием первых энергосистем возникли серьезные проблемы, и в первую очередь проблема устойчивости. Случаи нарушения устойчивости наблюдались в США еще в 1921 г. В нашей стране они произошли несколько позже — в конце 20-х годов в «Мосэнерго». В следующем десятилетии случаи нарушения устойчивости учащаются и превращаются в бич энергоснабжения. Часто причинами нарушений устойчивости был дефицит активных и реактивных мощностей и недопустимо низкие уровни частоты и напряжения, приводящие к авариям типа «лавины частоты» и «лавины напряжения».

Работы американских ученых были посвящены в основном исследованию динамической устойчивости. В отечественных энергосистемах наряду с нарушениями динамической устойчивости имели место многочисленные случаи нарушения статической устойчивости. Решению этих проблем посвящены многие оригинальные исследования, среди которых в первую очередь надо отметить работы выдающихся ученых П.С. Жданова, С.А. Лебедева и А.А. Горева [5.7–5.9].

В 30-е годы были выполнены первые экспериментальные исследования устойчивости и аварийного регулирования мощности паровых турбин, внедрялись новые средства релейной защиты и автоматики, устройства автоматического повторного включения линий. В 1937 г. на Свирской ГЭС был установлен первый регулятор частоты, началось внедрение быстродействующих автоматических регуляторов возбуждения синхронных машин и автоматической разгрузки по частоте.

За 15-летний срок план ГОЭЛРО был значительно перевыполнен. Установленная мощность электростанций страны в 1935 г. составила 6,9 млн. кВт, годовая выработка электроэнергии достигла 26,8 млрд. кВт?ч. По производству электроэнергии Советский Союз занял второе место в Европе и третье в мире.

Процесс объединения энергосистем начался еще в первой половине 30-х годов с создания сетей 110 кВ энергосистем в районах Центра и Донбасса. В 1940 г. для руководства параллельной работой Верхневолжских (Горьковской, Ивановской и Ярославской) энергосистем была создана объединенная диспетчерская служба. В связи с намечавшимся объединением энергосистем Юга в 1938 г. было создано Бюро Южной энергосистемы, которое затем было преобразовано в Оперативно-диспетчерское управление Юга; в 1940 г. была введена в эксплуатацию первая межсистемная связь напряжением 220 кВ Днепр — Донбасс [5.10].

Мощность всех электростанций страны в 1940 г. достигла 11,2 млн. кВт, выработка электроэнергии составила 48,3 млрд. кВт?ч. Суммарная мощность четырех наиболее крупных энергосистем — Московской, Ленинградской, Уральской и Южной составила 43% мощности всех электростанций страны, выработка электроэнергии — 68% производства электроэнергии в стране. Наибольшая мощность тепловой электростанции (ТЭС) в 1940 г. достигла 350 МВт, максимальная единичная мощность агрегата ТЭС — 100 МВт.

Интенсивное плановое развитие электроэнергетики было прервано Великой Отечественной войной. Перебазирование промышленности западных районов на Урал и в восточные районы страны потребовало форсированного развития энергетики Урала, Казахстана, Центральной Сибири, Средней Азии, Поволжья, Закавказья и Дальнего Востока. Особенно большое развитие получила электроэнергетика Урала, где выработка электроэнергии с 1940 по 1945 г. увеличилась в 2,5 раза.

В ходе войны электроэнергетике был нанесен громадный ущерб: взорваны, сожжены или частично разрушены 61 крупная электростанция и большое число мелких общей мощностью 5 млн. кВт, т.е. почти половина установленных к тому времени мощностей. Разрушено 10 тыс. км магистральных линий электропередачи высокого напряжения, большое количество подстанций.

Восстановление разрушенного энергетического хозяйства началось уже с конца 1941 г., в 1942 г. восстановительные работы велись в центральных районах европейской части СССР, а к 1945 г. эти работы распространились на всю освобожденную территорию страны.

В 1946 г. суммарная мощность электростанций СССР достигла довоенного уровня: в 1947 г. страна по производству электроэнергии вышла на первое место в Европе и на второе в мире. Наибольшая мощность ТЭС в 1950 г. составила 400 МВт, турбоагрегат мощностью 100 МВт стал типовым агрегатом, вводимым на ТЭС. В 1953 г. на Черепетской ГРЭС были введены энергоблоки по 150 МВт, восстановлен Днепрогэс. В 1954 г. в г. Обнинске была введена в эксплуатацию первая в мире атомная электростанция мощностью 5 МВт.

Суммарная мощность электростанций в 1955 г. достигла 37,2 млн. кВт, выработка электроэнергии составила 170,2 млрд. кВт-ч. Значительное развитие получили три работающие раздельно ОЭС европейской части страны: Центра, Урала и Юга; суммарная выработка этих ОЭС составила около половины всей производимой в стране электроэнергии.

Переход к следующему, качественно новому этапу развития электроэнергетики был связан с вводом в эксплуатацию мощных Волжских ГЭС и дальних линий электропередачи 400–500 кВ. В 1956 г. была введена в работу первая электропередача 400 кВ Куйбышев (ныне Самара) — Москва. Ее высокие технико-экономические показатели были достигнуты благодаря разработке и реализации ряда мероприятий по повышению устойчивости и пропускной способности: расщепление фазы на три провода, сооружение переключательных пунктов, ускорение срабатывания выключателей и релейных защит, применение продольной емкостной компенсации индуктивности и поперечной компенсации емкости линии с помощью батарей конденсаторов шунтирующих реакторов, внедрение автоматических регуляторов возбуждения (АРВ) генераторов гидростанции и мощных синхронных компенсаторов приемных подстанций и др.

Электропередача 400 кВ Куйбышев — Москва объединила энергосистемы Центра с энергосистемами Средней Волги, линия Куйбышев — Урал — с энергосистемами Предуралья и Урала. Этим было положено начало объединению энергосистем различных регионов и созданию ЕЭС европейской части СССР.

В последующем электропередачи Куйбышев — Москва и Куйбышев — Урал были переведены на напряжение 500 кВ. В 1959 г. вошла в эксплуатацию первая цепь электропередачи 500 кВ Волгоград — Москва, и в состав ОЭС Центра вошла Волгоградская энергосистема.

Во второй половине 50-х годов завершилось объединение энергосистем Закавказья; шел процесс объединения энергосистем Северо-запада, Средней Волги и Северного Кавказа. С 1960 г. началось формирование ОЭС Сибири и Средней Азии. В конце 50-х — начале 60-х годов образованы объединенные диспетчерские управления (ОДУ) Северо-запада, Средней Волги, Северного Кавказа, Сибири и Средней Азии, а в 1962 г. было заключено межгосударственное соглашение об организации в Праге Центрального диспетчерского управления (ЦДУ) для руководства параллельной работой объединенных энергосистем стран — членов СЭВ, в состав которых вошла Львовская энергосистема ОЭС Юга.

Велось широкое строительство электрических сетей. Наряду с развитием сети напряжением 500 кВ с конца 50-х годов началось внедрение сети напряжением 330 кВ; сети этого напряжения получили большое развитие в южной и северо-западной зонах европейской части СССР. В начале 60-х годов была создана единая сеть напряжением 500 кВ, участки которой стали основными системообразующими связями ЕЭС европейской части СССР; в дальнейшем и в ОЭС восточной части страны функции системообразующей сети стали переходить к сети 500 кВ, наложенной на развитую сеть 220 кВ.

В 60-х годах нарастали темпы ввода генерирующих мощностей и строительства электрических сетей. Ввод мощности в 1965 г. достиг 10,6 млн. кВт, а в 1970 г. превысил 12 млн. кВт. Протяженность электрических сетей Минэнерго СССР напряжением 110 кВ и выше возросла с 1960 по 1970 г. с 87,7 до 269,9 тыс. км.

Характерной особенностью энергетики, начиная с 60-х годов, стало последовательное увеличение мощности энергоблоков в составе вводимых мощностей ТЭС. В 1963 г. на Черепетской и Приднепровской ГРЭС были введены в эксплуатацию энергоблоки мощностью 300 МВт, в 1968 г. пущены энергоблок 500 МВт на Назаровской ГРЭС и энергоблок 800 МВт на Славянской ГРЭС.

Интенсивно развивалось строительство ГЭС: в 1961 г. на Братской ГЭС был введен гидроагрегат 225 МВт, в 1967 г. на Красноярской ГЭС — гидроагрегаты по 500 МВт. В течение 60-х годов завершилось сооружение Братской, Боткинской и ряда других ГЭС.

В западной части страны развернулось строительство АЭС. В 1964 г. вошли в эксплуатацию энергоблок 100 МВт на Белоярской АЭС и энергоблок 200 МВт на Нововоронежской АЭС; во второй половине 60-х годов были введены вторые энергоблоки на этих АЭС: 200 МВт на Белоярской и 365 МВт на Нововоронежской АЭС.

В течение 60-х годов завершилось формирование ЕЭС европейской части СССР, и в 1970 г. начался следующий этап развития электроэнергетики страны — формирование ЕЭС СССР. В составе ЕЭС в 1970 г. работали параллельно ОЭС Центра, Урала, Средней Волги, Северо-запада, Юга, Северного Кавказа и Закавказья, включавшие 63 энергосистемы. Три территориальные ОЭС — Казахстана, Сибири и Средней Азии — работали раздельно; ОЭС Дальнего Востока находилась в стадии формирования. Суммарная мощность электростанций ЕЭС в 1970 г. составила 104,9 млн. кВт, всех ОЭС — 142,9 млн. кВт, годовая выработка электроэнергии всеми электростанциями ЕЭС достигла 529,6 млрд. кВт?ч, всех ОЭС — 692,5 млрд. кВт?ч.

Переход к формированию ЕЭС в масштабе всей страны обусловил необходимость организации высшей ступени иерархии диспетчерского управления — создания ЦДУ ЕЭС СССР, которое было образовано в 1969 г.

В 1972 г. в состав ЕЭС СССР вошла ОЭС Казахстана. В 1973 г. энергосистема Болгарии присоединена на параллельную работу с ЕЭС СССР по межгосударственной связи 400 кВ Молдавская ГРЭС — Вулканешты — Добруджа.

В 1978 г. с завершением строительства транзитной связи 500 кВ Сибирь — Казахстан — Урал присоединилась на параллельную работу ОЭС Сибири. В том же году было закончено строительство межгосударственной связи 750 кВ Западная Украина — Альбертирша (Венгрия), и с 1979 г. началась параллельная работа ЕЭС СССР и ОЭС стран — членов СЭВ.

От сетей ЕЭС СССР осуществлялся экспорт электроэнергии в МНР, Финляндию, Турцию и Афганистан; через преобразовательную подстанцию постоянного тока в районе Выборга ЕЭС СССР соединялась с энергообъединением Скандинавских стран NORDEL.

Динамика структуры генерирующих мощностей в 70-х и 80-х годах характеризуется нарастающим вводом мощностей на АЭС в западной части страны и дальнейшим вводом мощностей на высокоэффективных ГЭС в основном в восточной части страны, началом работ по первому этапу создания Экибастузского энергетического комплекса, общим ростом концентрации генерирующих мощностей и увеличением единичной мощности агрегатов.

Мощность наиболее крупных электростанций России в настоящее время составляет: ТЭС — 4800 МВт (Сургутская ГРЭС-2), АЭС — 4000 МВт (Балаковская, Ленинградская, Курская), ГЭС — 6400 МВт (Саяно-Шушенская).

Технический прогресс в развитии системообразующих сетей характеризовался последовательным переходом к более высоким ступеням напряжения. Освоение напряжения 750 кВ началось с ввода в эксплуатацию в 1967 г. опытно-промышленной электропередачи 750 кВ Конаковская ГРЭС — Москва. В течение 1971–1975 гг. в ОЭС Юга была сооружена широтная магистраль 750 кВ Донбасс — Днепр — Винница — Западная Украина. В 1975 г. была сооружена межсистемная связь 750 кВ Ленинград — Конаково, позволившая передать в ОЭС Центра избыточную мощность ОЭС Северо-запада. Для создания мощных связей с восточной частью ЕЭС сооружалась магистральная линия электропередачи 1150 кВ Сибирь — Казахстан — Урал. Было начато также строительство электропередачи постоянного тока напряжением 1500 кВ Экибастуз — Центр.

В табл. 5.1 приведены данные по установленной мощности электростанций и протяженности электрических сетей 220–1150 кВ ЕЭС СССР за период 1960–1991 гг.

Формирование ЕЭС осуществлялось в основном с использованием двух систем напряжений: основной системы ПО — 220–500 кВ с последующим внедрением более высокой ступени напряжения 1150 кВ и системы — ПО — 150–330–750 кВ.

Создание мощных территориальных энергообъединений и организация их параллельной работы в составе ЕЭС СССР дали возможность повысить темпы роста энергетических мощностей за счет укрупнения электростанций и увеличения единичной мощности агрегатов, снизить стоимость 1 кВт установленной мощности, повысить производительность труда. Удельная численность промышленно-производственного персонала, занятого на электростанциях, на 1 МВт установленной мощности в электрических сетях и других подсобных предприятиях отрасли снизилась с 11 в 1950 г. до 2,8 чел. в 1990 г., а удельные расходы топлива на производство электроэнергии — с 590 до 325,8 г/(кВт?ч). Последовательно происходило уменьшение относительных потерь на транспорт электрической энергии, хотя и не в такой степени, как указанных выше показателей. В 1990 г. потери электроэнергии в электрических сетях на ее транспорт составили 8,65%.

Таблица 5.1.

Рост установленной мощности электростанций и протяженности электрических сетей 220–1150 кВ ЕЭС СССР

Показатель Годы 1960 1965 1970 1975 1980 1985 1991 Установленная мощность электростанций, млн., кВт 29,1 53,9 104,9 153,1 223,4 265,3 288,2 Высшее напряжение, кВ[4] 500 500 750 750 750 750 1150 Протяженность электрических сетей, тыс. км: 220 кВ 9,68 17,27 30,11 44,55 72,63 90,29 196,52 330 кВ 0,66 4,58 12,86 18,79 23,63 27,66 31,93 500 кВ 4,40 5,90 9,77 14,67 23,75 30,85 43,93 750 кВ — — 0,09 1,68 2,86 4,35 7,11 1150 кВ — — — — — 0,89 1,9

В послевоенные годы электрификация явилась основой научно-технического прогресса страны. На ее базе происходило непрерывное совершенствование технологий в промышленности, транспорте, связи, сельском хозяйстве и строительстве, осуществлялась механизация и автоматизация производственных процессов. Рост производства электроэнергии в эти годы опережал рост произведенного национального дохода в 1,6 раза.

Общий экономический эффект за счет создания ЕЭС в сравнении с изолированной работой энергосистем оценивался снижением капитальных вложений в электроэнергетику на 2 млрд. руб. в ценах 1984 г. и уменьшением ежегодных эксплуатационных расходов на сумму 1 млрд. руб. Выигрыш в снижении суммарной установленной мощности электростанций ЕЭС оценивался цифрой порядка 15 млн. кВт. Несмотря на то что требования в отношении резервов мощности и надежности к основным электрическим сетям в ЕЭС СССР были несколько ниже аналогичных требований в энергообъединениях Западных стран, благодаря хорошо организованному управлению обеспечивалась высокая надежность электроснабжения потребителей, не было системных аварий, затрагивающих большое число потребителей, какие имели место в США (1965, 1977, 1996 гг.), Франции (1978 г.), Швеции (1979, 1983 гг.), Бельгии (1982 г.), Канаде (1982 г.).

Следующий этап в развитии электроэнергетики на территории бывшего СССР связан с происшедшими политическими изменениями в независимых государствах бывших республиках СССР.

Раздел электроэнергетической собственности между независимыми государствами — бывшими республиками СССР — обусловил необходимость перехода от централизованного планирования развития и управления функционированием ЕЭС бывшего СССР к скоординированному планированию развития и управлению функционированием объединенных энергосистем независимых государств.

В 1992 г. было заключено соглашение «О координации межгосударственных отношений в области электроэнергетики Содружества Независимых Государств». В соответствии с ним был создан электроэнергетический Совет из числа первых руководителей электроэнергетических отраслей СНГ и его постоянно работающий орган — Исполнительный комитет. Позднее к этому соглашению присоединилась Грузия.

В настоящее время внутри стран СНГ проводятся различные преобразования электроэнергетического сектора. Наиболее существенные изменения в этой области произошли в Российской Федерации. В декабре 1992 г. было организовано Российское акционерное общество энергетики и электрификации (РАО «ЕЭС России»), в уставной капитал которого переданы из районных энергосистем крупные электростанции мощностью: тепловые — 1000 МВт и более, гидравлические — 300 МВт и более, магистральные линии электропередачи высокого напряжения, формирующие Единую энергосистему Российской Федерации, ЦДУ Единой энергосистемы России, диспетчерские управления ОЭС, научно-исследовательские и проектные организации. На базе крупных электростанций организованы дочерние акционерные общества РАО «ЕЭС России», а на базе региональных энергосистем — региональные акционерные общества АОэнерго. Создан федеральный оптовый рынок электрической энергии и мощности. Проведенные в России преобразования в электроэнергетике способствовали обеспечению устойчивой работы отрасли в тяжелых условиях экономического и финансового кризиса в стране.

В других странах СНГ процесс реформирования структур управления в электроэнергетике находится в разных стадиях развития. Наиболее продвинулась в вопросах реформирования структуры управления в электроэнергетике вслед за Российской Федерацией Украина. Существенные изменения в управлении электроэнергетикой произошли в Армении, Грузии, Казахстане и Киргизии. Ведется подготовка к структурной перестройке и в других странах СНГ.

К концу 1995 г. установленная мощность электростанций государств Содружества составила около 315 млн. кВт. Производство электроэнергии в 1995 г. составило 1260 млрд. кВт?ч и снизилось по сравнению с 1990 г. на 27%. В структуре генерирующих мощностей доля ТЭС составляет 69%, доля ГЭС и АЭС — соответственно 20 и 11%.

Наиболее важными задачами, стоящими перед странами СНГ в области электроэнергетики, становятся: повышение эффективности производства и использования энергии; коренное совершенствование системы формирования тарифов; обеспечение надежности электроснабжения потребителей; улучшение защиты окружающей среды; обеспечение необходимых вводов и модернизация существующих электростанций и сетей с использованием новых технологий; коренное повышение технического уровня оборудования и показателей качества электрической энергии, приведение их в соответствие с мировым уровнем; создание нормативной и законодательной базы, обеспечивающей устойчивое развитие электроэнергетики государств Содружества.

Важнейшее значение приобретают углубление интеграции стран СНГ в области электроэнергетики и организация эффективного оперативно-технологического взаимодействия объединенных энергосистем государств Содружества. Это позволит оптимальным образом развивать электроэнергетику, уменьшить объем необходимых инвестиций, повысить надежность электроснабжения потребителей, улучшить использование первичных энергоресурсов, осуществлять взаимовыгодные обмены электроэнергией, уменьшить затраты на топливо для электростанций и оказать в целом положительное влияние на экономику стран СНГ, повысить ее конкурентоспособность на мировом рынке.

Данный текст является ознакомительным фрагментом.