6.6.4. ИНДИВИДУАЛЬНЫЙ ЭЛЕКТРОПРИВОД В ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ

We use cookies. Read the Privacy and Cookie Policy

6.6.4. ИНДИВИДУАЛЬНЫЙ ЭЛЕКТРОПРИВОД В ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ

Индивидуальный электропривод сыграл большую роль в развитии и совершенствовании многих технологических машин и агрегатов. Это осуществлялось главным образом за счет приближения двигателя к рабочему органу и исключения благодаря этому значительной части громоздких механических передач, а также за счет перехода от механического к электрическому управлению скоростью. Ниже показано несколько примеров эволюции привода и кинематики механизмов ряда технологических агрегатов [6.54]: текстильной центрифуги (рис. 6.39), цементной печи (рис. 6.40), рольганга (рис. 6.41), фрезерного станка (рис. 6.42) [6.58]. Эти примеры свидетельствуют о серьезных упрощениях в конструкции агрегатов при одновременном повышении функциональных возможностей, производительности и качества технологического процесса, снижении потерь электроэнергии.

Рис. 6.39. Видоизменение одиночного электропривода текстильной центрифуги

Рис. 6.40. Видоизменение передач между двигателем и цементной печью

Рис. 6.41. Эволюция электропривода рольганга 

Так, опыты, проведенные на трех аналогичных токарных станках, показали, что при непосредственном приводе шпинделя от двигателя удельная производительность составила 13,4, при приводе через зубчатые колеса 8,3 и через ступенчатые шкивы — 7,4 кг/кВт?ч [6.54]. При переходе в одном из типов прядильных машин к многодвигательному индивидуальному электроприводу производительность выросла на 40–100% при уменьшении потребления энергии на 20–40% и снижении численности персонала на 60% [6.54, 6.58].

Еще больший эффект дает соединение электродвигателя с рабочим органом рабочей машины в одно единое целое: мотор — колесо транспортного средства, электрошпиндель, электроверетено, электроинструмент, ролик рольганга в виде наружного ротора двигателя со статором, размещенным внутри, и т.п. Это направление интеграции отдельных элементов в электромеханические модули, возникшее на ранней стадии освоения индивидуального электропривода, получило особенно убедительное развитие в последние годы.

Влияние электрического регулирования скорости на кинематику агрегата иллюстрируется на рис. 6.43 [6.58] применительно к сверлильному станку с механическим (а), электромеханическим — двухскоростной двигатель (б) и электрическим (в) регулированием скорости.

Рис. 6.42. Фрезерный станок с одиодвигательным (а) и трехдвигательным (б) приводом

Рис. 6.43. Сверлильный станок с разными способами регулирования скорости 

К началу 40-х годов электромеханическая часть индивидуального, в том числе многодвигательного электропривода, приобрела современные черты. Его характерной особенностью оставалось релейно-контакторное управление, хотя уже стали появляться системы непрерывного управления. К ним в первую очередь следует отнести рассмотренную ранее систему Г — Д, некоторые схемы электрического вала на асинхронных двигателях с фазным ротором, использованные на шлюзовых затворах, в ряде машин и станков.

Данный текст является ознакомительным фрагментом.