8.4.1. АВИАЦИОННОЕ ЭЛЕКТРООБОРУДОВАНИЕ
8.4.1. АВИАЦИОННОЕ ЭЛЕКТРООБОРУДОВАНИЕ
Электроэнергия является одним из основных видов энергии, используемой на борту летательных аппаратов. Потребителями электрической энергии являются практически все виды авиационного оборудования. Развитие системы электрооборудования происходило одновременно с развитием самой авиации.
По мере появления новых типов летательных аппаратов, изменения технических требований менялся качественный и количественный состав систем электрооборудования, совершенствовались его характеристики [8.34–8.36].
Практическое применение электрическая энергия нашла в системах зажигания топливно-воздушной смеси в авиационных двигателях. Большая роль в создании теории и практики систем зажигания принадлежит B.C. Кулебакину. Им построена теория рабочих процессов в магнето высокого напряжения. В развитии теории систем зажигания большая заслуга также принадлежит А.Н. Ларионову.
Источники электрической энергии на борту летательных аппаратов появились практически одновременно с созданием самих летательных аппаратов. Так, на самолетах «Илья Муромец» разработки И.И. Сикорского использовался источник электроэнергии мощностью 500 Вт.
В период первой мировой войны электроэнергия использовалась на самолетах в устройствах радиосвязи, освещения, как внутреннего, так и наружного. В качестве источника электроэнергии использовался генератор переменного тока мощностью 200 Вт с приводом от ветряного двигателя или вала авиационного двигателя.
В середине 20-х годов для питания радиоустройств применялся генератор постоянного тока напряжением до 12 В. В 1933–1934 гг. напряжение было повышено до 24 В с одновременным увеличением мощности генератора до 1 кВт. Привод от ветряного двигателя был заменен приводом от авиационного двигателя. Для обеспечения заданных требований по надежности генератор постоянного тока работал параллельно с аккумуляторной батареей.
Важным этапом в развитии электрооборудования самолета явилось создание в 1939 г. в СССР пикирующего бомбардировщика конструктора В.Н. Петлякова. На этом самолете были впервые применены различные виды электроприводов, обслуживающие различные органы управления самолетом, в том числе посадочные щитки, стабилизатор, управление радиаторами, триммерами, шасси и др. В качестве приводов использовались дистанционно управляемые системы. Аналогичные разработки за рубежом начали проводиться только через 3 года.
Внедрение на самолетах нового вида оборудования потребовало применения мощных источников электрической энергии. Следует отметить особую заслугу в создании генераторов переменного тока А.Н. Ларионова, под руководством которого была выполнена разработка генератора переменного тока для самолета «Максим Горький».
До конца 40-х и начала 50-х годов основным источником питания являлись коллекторные генераторы постоянного тока, установленные через редуктор на авиационных двигателях. Как правило, число генераторов соответствовало числу авиационных двигателей. Генераторы включались на параллельную работу между собой и с аккумуляторной батареей.
В конце 40-х — начале 50-х годов была проведена разработка стартер-генераторов. Использован принцип обратимости электрической машины, а также то обстоятельство, что электрическая машина устанавливалась непосредственно на авиационном двигателе. При этом в режиме запуска электрическая машина работала как стартер. После запуска электрическая машина переводилась в режим генератора. Таким образом был осуществлен автономный запуск двигателей самолета, что значительно улучшило условия его эксплуатации.
Значительный рост потребителей электроэнергии обусловил и увеличение установленной мощности источников энергии. На некоторых типах летательных аппаратов использовалось восемь генераторов мощностью 12 кВт каждый.
Впоследствии коллекторные генераторы были заменены на бесколлекторные. В развитии оборудования летательных аппаратов наметилась устойчивая тенденция к использованию электрической энергии переменного тока. В этой связи в энергетическую систему потребовалось включить преобразователи постоянного тока в переменный.
Дальнейший рост потребления электроэнергии начал сдерживаться значительным увеличением массы как самих источников электроэнергии, так и систем ее распределения.
Эффективным способом уменьшения массы электрооборудования, как известно, является переход на более высокий уровень напряжения. Вместе с тем повышение уровня напряжения сдерживается наличием коллектора, ухудшением условий коммутации, особенно на больших высотах полета.
Таким образом, назрела необходимость перевода электроэнергетической системы самолета с постоянного тока на переменный как основной вид электроэнергии. Этому переходу предшествовало применение генераторов переменного тока, в основном однофазных, для питания мощных радиолокационных установок.
В конце 40-х и начале 50-х годов во всем мире и в нашей стране велись интенсивные работы по разработке и внедрению электроэнергетических систем переменного тока. Однако внедрение переменного тока на борту летательного аппарата натолкнулось на целый ряд трудностей, основной из которых является осуществление параллельной работы генераторов переменного тока. Известно, что параллельная работа электрических генераторов постоянного тока может быть реализована при различных частотах их вращения. Условием параллельной работы генераторов переменного тока является их синфазная работа, что не может быть обеспечено в реальных условиях полета.
Первой попыткой обойти это противоречие было создание принципиально новой системы параллельной работы синхронных генераторов, установленных непосредственно на авиадвигателях и снабженных комбинированной муфтой. Эта разработка была выполнена в 1954 г. коллективом под руководством А.Ф. Федосеева и внедрена на самолетах-заправщиках генерального конструктора В.М. Мясищева.
Комбинированная муфта представляла собой сочетание фрикционной пары и обгонного устройства. В зависимости от режима работы энергосистемы в действие приводилась либо фрикционная, либо обгонная муфта, и, таким образом, независимо от частот вращения авиационных двигателей условия параллельной работы генераторов не нарушались. В системе также была предусмотрена автоматическая регулировка частоты вращения авиационного двигателя, обеспечивающая малые скольжения роторов генераторов одного относительно другого.
Следующим этапом внедрения переменного тока на самолетах было использование в качестве промежуточного звена между генератором и двигателем привода постоянной скорости, назначение которого состояло в преобразовании переменной частоты вращения авиационного двигателя в постоянную частоту вращения генератора.
Постепенно к середине 70-х годов сложилась типовая структура системы электроснабжения многомоторного самолета. Система включает синхронный генератор, установленный на гидропривод, трансформаторно-выпрямительные устройства для питания потребителей постоянного тока, управляемые выпрямительные блоки для подзарядки аккумуляторов, а также аппаратуру управления, защиты и регулирования.
На протяжении всей истории развития авиационной электротехники велись интенсивные работы по снижению массы электрооборудования. На ранних стадиях в электрических генераторах постоянного и переменного тока использовались воздушные системы охлаждения. В конце 60-х годов были разработаны синхронные генераторы с жидкостной циркуляционной системой охлаждения. При этом было достигнуто снижение удельной массы с 1 до 0,7 кг/кВт. Применение систем с непосредственным жидкостным охлаждением дало снижение удельной массы до 0,3 кг/кВт.
Одновременно происходило непрерывное совершенствование аппаратуры регулирования, защиты и управления. На смену вибрационным регуляторам напряжения пришли угольные регуляторы.
Достижения смежных отраслей промышленности, в частности электронной, использовались при разработке новых поколений аппаратуры, входящей в состав различных систем самолетного электротехнического оборудования. Начиная с середины 60-х годов получили широкое внедрение в электротехнические комплексы изделия, выполненные на базе полупроводниковой технологии. Во всем мире, в том числе и в нашей стране, велись и ведутся поиски путей решения проблемы построения систем электроснабжения самолета, в которых генераторы устанавливаются непосредственно на авиационные двигатели, а стабилизация частоты осуществляется полупроводниковыми преобразователями частоты.
В 1977 г. группой ученых и специалистов различных отраслей промышленности были проведены исследования для определения возможных направлений дальнейшего развития методов генерирования электроэнергии и оценки возможностей использования новых физических явлений и принципов получения электрической энергии для питания бортовых систем летательных аппаратов. Была предложена следующая классификация авиационных электротехнических комплексов:
АЭК постоянного тока;
АЭК переменного тока нестабильной частоты;
АЭК переменного тока стабильной частоты;
АЭК с источниками электроэнергии нетрадиционного типа.
В частности, предполагалось до конца 2000 г. в качестве основной применять систему переменного тока с гидроприводом. Последние десятилетия подтвердили этот прогноз.
Большое внимание было уделено снижению массы элементов энергосистемы. В этой части достигнут немалый прогресс. За счет интеграции генератора в конструкцию гидропривода удалось существенно снизить удельную массу всего агрегата до — 1 кг/кВт. Под интеграцией имеется в виду объединение элементов генератора и привода — подшипников, силовых элементов конструкции, системы охлаждения и т.д.
Промышленностью проводятся работы по созданию высокоскоростных электрических машин (до 24 000 об/мин). В связи с наметившейся тенденцией использования криогенных топлив открывается перспектива использования этого вида топлива в качестве хладагента. Цикл работ по этой проблеме проведен кафедрой электрических машин Московского авиационного института (МАИ).
Выполнен большой объем работ по созданию специальной коммутационной аппаратуры. Выпускаются аппараты для коммутации тока от 0,1 до 1000 А. К настоящему времени заводами поставляется более 100 типов реле и контакторов, в том числе герметичных.
Важным этапом в развитии самолетных электрических систем являлось создание пикирующего бомбардировщика ПЕ-2. На этом самолете впервые в истории отечественной авиации широкое применение получил электропривод.
Еще большее применение электропривод получил на самолете, конструкции А.Н. Туполева (ТУ-4), где впервые была реализована синхронно следящая система для управления стрелковым оружием и применен электропривод шасси повышенной надежности. Этот тип привода по своим характеристикам превосходил зарубежные образцы. В его состав входили два электрических двигателя, соединенных через дифференциальный редуктор с выходным валом. В нем удачно использовано свойство дифференциала при отказе одного из двигателей изменять частоту вращения электромеханизма при неизменном моменте вращения.
Электропривод обслуживал практически все основные самолетные системы. В середине 50-х и начале 60-х годов были созданы электромеханизмы для управления поворотом закрылков, стабилизатором, триммерами. Большое количество электромеханизмов используется в топливных и гидравлических системах: механизмы закрытия и перекрытия топливных кранов, приводы топливных насосов. Электропривод широко используется в радиотехнических системах в качестве привода антенн, а также в системах вооружения и специальных системах.
Электропривод получил большое развитие в связи с появлением транспортной и военно-транспортной авиации. Для механизации погрузочно-разгрузочных работ на этих самолетах используются электролебедки.
Появление на борту летательных аппаратов большого числа энергоемких потребителей электрической энергии повлекло за собой значительный рост установленной мощности. Так, например, на борту самолета АН-22 установлено четыре генератора мощностью 120 кВ?А каждый, на самолете ТУ-144 — четыре генератора переменного тока мощностью 60 кВ?А каждый, на самолете ИЛ-96–300 — четыре генератора мощностью 60 кВ?А каждый и на самолете ТУ-204 — два генератора мощностью 90 кВ?А каждый.
Следует отметить, что общая тенденция — объединение, интеграция различных систем в единый комплекс — имеет место и в электрических системах. В последние 10–15 лет получили развитие смешанные электрогидравлические и электропневматические устройства, в которых силовые функции выполняет гидравлика, а управление — электричество. Основным элементом электромеханизма является электродвигатель.
Уже в середине 50-х годов сложилась типовая структура электромеханизма. В состав электромеханизма входят электродвигатели, муфты сцепления-торможения, редуктор, фрикционная муфта с шариковым регулятором и концевые выключатели. В начале 70-х годов были проведены разработки электропривода с волновой передачей, в которой за счет увеличения поверхности сцепления удается значительно повысить механическую нагрузку на выходном валу при меньшем числе ступеней передачи. Так, например, в системе механизации крыльев самолета с изменяемой геометрией использован волновой редуктор с передаточным числом 1:100 и моментом на выходном валу 50 кН?м.
В связи с тем, что электропривод, как правило, обслуживает системы, к которым предъявляются требования высокой надежности, собственные показатели надежности электропривода также должны быть достаточно высокими.
Одной из причин широкого применения на самолете системы электроснабжения переменного тока являлось использование бесконтактных асинхронных двигателей. Вместе с тем асинхронный электродвигатель имеет существенный недостаток — малый пусковой момент.
За последнее десятилетие много внимания уделялось разработке бесконтактных вентильных двигателей, в которых используется магнитоэлектрическая машина с самарий-кобальтовыми магнитами, имеющими высокую удельную энергию. Этот новый класс электрических машин получил развитие благодаря появлению малогабаритных управляемых полупроводниковых приборов.
Важным этапом в развитии электрооборудования для авиации явилось создание в 1957 г. сверхзвукового стратегического бомбардировщика М-50 конструкции В.Н. Мясищева. На этом самолете впервые в мире была реализована электрическая дистанционная система управления всеми органами управления самолета, впоследствии получившая название «электрическая проводка». С учетом важности выполняемых функций, а следовательно, для обеспечения высоких требований по надежности, в системе был использован принцип троирования. В этих системах в широком масштабе были применены полупроводниковые приборы в устройствах управления.
Для управления сектором газа авиационных двигателей на самолетах серии СУ была применена дистанционная система, в которой использовалось специальное логическое устройство, определяющее неисправность в системе и производящее автоматическое переключение на резервные каналы.
За последние десятилетия наметилась тенденция к широкому применению в системах электрооборудования различных средств вычислительной техники, в том числе бортовых вычислительных машин (БЦВМ), при решении самых разнообразных задач управления и регулирования. Как показали исследования, применение БЦВМ в задачах регулирования режимов в электротехнических системах позволяет значительно повысить качество электроэнергии: в несколько раз сокращается длительность переходного процесса, уменьшается значение перерегулирования, появляется возможность организации более рациональных структур систем, устойчивых к отказам и внешним воздействиям, и существенного уменьшения их массы.
Примером может служить применение на самолете мультиплексных систем управления потребителями электроэнергии.
В середине 70-х годов в связи с появлением на борту летательного аппарата новых типов радиоэлектронного оборудования возникла необходимость генерирования электрической энергии большей мощности — от нескольких мегаватт до сотен мегаватт.
В опытно-конструкторских организациях и научных центрах были проведены исследования различных источников получения такой энергии (электромеханические генераторы; накопители электрической энергии; МГД-генераторы).
В качестве электромеханического генератора был использован синхронный бесконтактный генератор с электромагнитным возбуждением, воздушным охлаждением и кратковременным режимом работы (до 100 с). Благодаря тепловой инерции генератора температура элементов за время работы не достигала предельных значений, что позволяло снизить его удельную массу до 0,2 кг/кВт.
Под руководством Д.А. Бута на кафедре электрических машин в МАИ проведены теоретические исследования возможностей использования в качестве мощного источника электроэнергии МГД-генераторов и различных видов накопителей электроэнергии.
В конце 70-х годов за рубежом и в нашей стране рассматривалась концепция единой электроэнергетической системы, суть которой заключалась в следующем.
На существующих типах самолетов используются в основном два вида энергии — электрическая и гидравлическая. Обе системы соизмеримы как по количеству генерируемой энергии, так и по протяженности систем распределения. Очевидно, что наличие на летательном аппарате двух различных систем, имеющих во многом одинаковое назначение, вызывает определенные трудности в эксплуатации, организации структур, усложняет проведение мероприятий по их модернизации. Появление всережимных самолетов обусловило применение специальных устройств в виде демпферов, гидравлических агрегатов, управляемых по заданным законам электроавтоматикой. Появились смешанные системы управления, получившие название электрогидравлических систем.
Вместе с тем гидравлические системы, выполняющие, как правило, функции приводов органов управления самолетом, в принципе могут быть заменены соответствующими электрическими приводами.
Сравнение основных параметров гидропривода и электропривода показывает, что электропривод уступает гидроприводу по удельной массе и быстродействию.
Существенное преимущество электрическая система по отношению к гидравлической имеет в эксплуатационных затратах, органичном сочетании электроавтоматики и собственно привода.
Перспектива использования полностью электрической системы связана с применением нового типа высокоскоростного электропривода на базе вентильного двигателя с постоянными магнитами высокой энергии.
Данный текст является ознакомительным фрагментом.