11.3.2. ЛАЗЕРНЫЕ ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
11.3.2. ЛАЗЕРНЫЕ ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
За короткое время лазерные приборы нашли широкое применение не только в науке (физика, химия, биология), но и в промышленных технологиях. Рассмотрим преимущественно становление лазерной техники для резки, сварки и термообработки.
Развитие квантовой электроники берет начало от первых работ В.А. Фабриканта и его сотрудников, высказавших в 1951 г. идеи о возможности использования неравновесных квантовых сред (в частности, неравновесно возбужденных состояний атомов ртути). В 1953 г. советские ученые Н.Г. Басов и А.М. Прохоров в целях усиления и генерации электромагнитных колебаний СВЧ-диапазона предложили использовать излучение «активных» молекул аммиака NH3. Были заложены основы теории и создан действующий образец молекулярного генератора — мазера [Н.Г. Басов и A.M. Прохоров в СССР, Ч. Таунс (С. Townes), США, 1954 г.]. Важнейшей для реального создания квантовых приборов явилась идея использования открытых резонаторов [A.M. Прохоров, 1958 г. и независимо А. Шавлов и Р. Дикке (A. Shavlov, R. Dicke), США], составляющих в настоящее время основу конструкции всех лазеров.
Примерно в то же время в США велась активная работа в данном направлении. В 1958 г. были опубликованы теоретические работы Ч. Таунса и А. Шавлова о возможности создания квантового генератора оптического диапазона. В 1960 г. Т.Г. Мейманом (T.G. Meiman, США) был запущен первый лазер, а в 1961 г. разработана теория лазерного эффекта. В этом первом лазере в качестве активной среды использовался кристалл рубина. В том же году в США был создан первый гелий-неоновый газовый лазер [А. Джаван, У. Беннет, Д. Эрриот (A. Javan, W. Bennet, D. Erriot)].
Основополагающие работы в области квантовой электроники были отмечены в 1964 г. присуждением Нобелевской премии Н.Г. Басову, A.M. Прохорову (СССР) и Ч. Таунсу (США). Дальнейшие работы привели к созданию разнообразных типов лазеров: твердотельных; газовых (атомарных, ионных, молекулярных); на красителях; химических; полупроводниковых.
Для размерной обработки (резки, сварки, термообработки) наиболее подходящими оказались твердотельные и газовые молекулярные (в основном СO2) лазеры.
При воздействии сфокусированного мощного (сотни ватт и более) лазерного излучения на поверхность твердого тела вещество нагревается, плавится, частично испаряется и ионизируется. В неоднородно нагретом веществе возникают сложные течения жидкости, паров, плазмы и окружающего газа. Перемешивание вещества оказывает, в свою очередь, существенное влияние на распространение лазерного излучения, приводя к дополнительной фокусировке либо дефокусировке.
Экспериментальные и теоретические исследования воздействия сфокусированного лазерного излучения при обработке материалов позволили определить основные моменты, качественно влияющие на обработку.
Исследования процессов при воздействии сфокусированного лазерного излучения и оптимизации лазерных характеристик позволили реализовать в нашей стране определенный набор лазеров и лазерных технологических комплексов. Сегодня имеется отечественное промышленное технологическое оборудование, использующее газовые лазеры. Это, в частности:
одномодовый СO2-лазер мощностью 80 Вт (НПО «Исток»);
одномодовый СO2-лазер мощностью 1 кВт с быстрой аксиальной прокачкой (г. Кстово Нижегородской обл.). Накачка производится продольным самостоятельным разрядом. При использовании двух координатного стола с компьютерным управлением может быть применен для резки металлических листов (скорость до 3 м/мин при толщине 1 мм), а также для резки фанеры и древесины толщиной до 40 мм;
быстропроточные газовые лазеры (МНТК ТЛ, г. Шатура Московской обл.) мощностью 1–1,5 кВт. Накачка производится самостоятельным поперечным разрядом. При использовании координатного стола может быть применен для резки и сварки. Возможно использование лазера для очень скоростной (вплоть до 15–20 м/мин) резки тонколистовых металлов, лазерной сварки, термообработки.
В твердотельных лазерных комплексах накачка проводится излучением ксеноновой лампы, возбужденной либо импульсно-периодическим, либо непрерывным сильноточным разрядом.
Лучшими параметрами обладает твердотельный комплекс ГПТЛ-100/500 (НПО «Ротор», г. Черкассы), в котором лазер излучает импульсы длительностью 0,4–0,8 мс с частотой следования до 150 Гц при средней мощности до 100 Вт. Двухкоординатный стол, сопряженный с персональным компьютером, имеет рабочее поле 450x500 мм при скорости перемещения до 3 м/мин. Этот лазерный комплекс предназначен для прецизионной резки тонколистовых металлов толщиной до 3 мм (скорость резки до 400 мм/мин при толщине листов нержавеющей стали 1 мм).
На базе быстропроточного газового лазера ТЛ-5, модернизированного твердотельного лазерного излучателя со средней мощностью до 250 кВт и двухкоординатного стола с рабочим полем 3x4 м и скоростью перемещения до 3,5 м/мин в ВЭИ разработан универсальный лазерный комплекс.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Ионные и лазерные установки
Ионные и лазерные установки Вопрос. Как должны компоноваться и размещаться ионные и лазерные установки?Ответ. Должны компоноваться, а входящие в их состав блоки размещаться с учетом мер, обеспечивающих помехоустойчивость управляющих и измерительных цепей этих
Источники:
Источники: 1. История отечественного судостроения, т.5. СПб.: "Судостроение", 1996.2. Шмаков Р.А. Опередившие время… (ПЛА проектов 705 и /05К). "Морской Сборник", 1996, 9 7.3. Адмиралтейские верфи. Люди, корабли, годы. 1926-1996, СПб: "Гангут", 1 9964. Михайловский А.П. Рабочая глубина. Записки
ИСТОЧНИКИ
ИСТОЧНИКИ РГА ВМФ. Фонды: р-12 опись 1 дело № 22 "О степени готовности кораблей Балтийского флота", р-35 1 № 6, р- 2293№ 56 "Журнал боевых действий эсминца "Энгельс", р-2571№ 62л. 97,139, р-2571№ 101, р-3511№ 7л.18, р-951№16л.З, р-2502№33л.89 "Приказы командира бригады эсминцев МСБМ. 1932., р-2571№ 50 "Тех.
Датчики ИК излучения
Датчики ИК излучения Датчики ИК излучения работают в диапазоне низких частот излучения световых волн (900 нм и ниже). Они заслуживают специального рассмотрения, поскольку широко используются в роботах для ориентирования, обхода препятствий и связи.Использование ИК
Лазерные, телевизионные и "умные" бомбы
Лазерные, телевизионные и "умные" бомбы Лазеры В начале двадцатого столетия, эмигрировавший в США хорватский ученый Николай Тесла (имя Теслы было дано единице магнитной индукции в Международной системе мер (СИ) — 1 Тесла = 1 Вебер/м2), изобрел трансформатор (как он назвал
ЛИТЕРАТУРА И ИСТОЧНИКИ:
ЛИТЕРАТУРА И ИСТОЧНИКИ: 1. Российский государственный архив экономики.Фонды: Народный комиссариат тяжёлой промышленности СССР, Министерство тяжёлого машиностроения СССР, Народный комиссариат танковой промышленности СССР, 3-е Главное управление наркомата танковой
8.3.1. Источники технологии
8.3.1. Источники технологии Выше уже отмечалось, что передача информации осуществляется посредством лицензирования или другой формы приобретения интеллектуальной собственности, принадлежащей университетам и защищенной существующей патентной системой[52].
ИСТОЧНИКИ РГА ВМФ
ИСТОЧНИКИ РГА ВМФ Фонд 417. Главный морской штаб. Фонд 418. Морской генеральный штаб. Фонд 421. Морской Технический комитет. Фонд 427. Главное управление кораблестроения и снабжений Фонд 609. Штаб командующего флотом Черного моря. Фонд 870. Вахтенные и шканечные журналы (коллекция).
§ 4.1 Ритц и проблема излучения абсолютно чёрного тела
§ 4.1 Ритц и проблема излучения абсолютно чёрного тела Принципиальные трудности в теории излучения чёрного тела ведут нас не столько к тому, чтобы вместе с Планком вводить частицу энергии-времени, но скорее к требованию восстановить при помощи принципа наименьшего
6.2. Доза излучения
6.2. Доза излучения Основными факторами, влияющими на эффективность обеззараживания природных и сточных вод УФ-облучением, являются:– чувствительность различных вирусов к действию УФ-облучения;– мощность лампы;– степень поглощения УФ-облучения водной
Источники
Источники Источников по классической метрологии много. Полный анализ их невозможен, я бы рекомендовал следующие книги:Б.Г.Артемьев, Ю.Е.Лукашов «Справочное пособие для специалистов метрологических служб»;В.А.Кузнецов, Г.В.Ялунина «Общая метрология»;«Метрология,
Измерение мощности излучения, доз облучения, активности нуклида
Измерение мощности излучения, доз облучения, активности нуклида Эти измерения в быту применяются, к счастью, редко. В нормальной жизни — собственно, никогда. Но нам их производить приходилось, и будь люди в этой сфере компетентнее — и трупов, и страхов было бы меньше.
9.3. ПРИБОРЫ ДЛЯ ПЕРЕРАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ В ПРОСТРАНСТВЕ
9.3. ПРИБОРЫ ДЛЯ ПЕРЕРАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ В ПРОСТРАНСТВЕ Одной из основных задач техники освещения и облучения является перераспределение энергии излучения источника в заданном направлении пространства. Эту цель выполняет целая группа приборов, называемая
Коллектив авторов
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉