1.5. ЛИНЕЙНЫЕ ИЗОЛЯТОРЫ
1.5. ЛИНЕЙНЫЕ ИЗОЛЯТОРЫ
Линейные изоляторы предназначаются для подвески проводов и грозозащитных тросов к опорам линий электропередачи. В зависимости от напряжения линий электропередачи применяются штыревые или подвесные изоляторы, изготовленные из стекла, фарфора или полимеров (рис. 1.3–1.5).
Рис. 1.3. Линейные штыревые изоляторы: а – фарфоровый ШФ-10Г; б – стеклянный НС 18А
Рис. 1.4. Конструкции подвесных тарельчатых изоляторов: а – из закаленного стекла с конусной заделкой деталей; б – из фарфора с «арочной» заделкой деталей; 1 – стержень; 2 – изоляционная деталь; 3 – шапка; 4 – цементная заделка; 5 – замок; 6 – герметик
Рис. 1.5. Полимерный изолятор типа ЛК 70/35-AIV
Штыревые изоляторы применяются при напряжении от 0,4 до 6 кВ, при напряжении от 10 до 35 кВ применяются как штыревые, так и подвесные изоляторы.
Изоляторы из закаленного стекла в отличие от фарфоровых не требуют проверки на электрическую прочность перед монтажом. В случае наличия дефекта изолирующая деталь стеклянного изолятора рассыпается на мелкие части, а остаток стеклянного изолятора сохраняет несущую способность, равную не менее 75 % номинальной электромеханической прочности изолятора.
Полимерные изоляторы представляют собой комбинированную конструкцию, состоящую из высокопрочных стержней из стеклопластика с полимерным защитным покрытием, тарелок и металлических наконечников. Стеклопластиковый стержень защищается от внешних воздействий защитной оболочкой, стойкой к ультрафиолетовому излучению и химическим воздействиям. Полимерные изоляторы позволяют заменить целые гирлянды стеклянных и фарфоровых изоляторов. Кроме того, полимерные изоляторы значительно легче, чем гирлянды из стекла и фарфора.
Эксплуатационные характеристики изоляторов зависят от аэродинамических характеристик изолирующей детали («тарелки») изолятора. Хорошее обтекание изолятора способствует уменьшению загрязнения, лучше происходит его самоочистка ветром и дождем и, как следствие, не происходит значительного снижения уровня изоляции гирлянды.
Основные характеристики изолятора – его механическая разрушающая сила, кН, электромеханическая разрушающая сила, кН, а также соотношение длины пути утечки изолятора, мм, к строительной высоте изолятора, мм.
Механическая разрушающая сила – наименьшее значение силы, приложенной к изолятору в определенных условиях, при которой он разрушается.
Электромеханическая разрушающая сила – наименьшее значение силы, приложенной к изолятору в определенных условиях, находящемуся под действием разности электрических потенциалов, при которой он разрушается.
Длина пути утечки изолятора – это кратчайшее расстояние или сумма кратчайших расстояний по контуру наружной изоляционной поверхности между частями, находящимися под разными электрическими потенциалами. От этой величины зависит надежность работы изолятора при загрязнении и увлажнении.
Хранение изоляторов на площадке должно осуществляться под навесом и в таком положении, чтобы избежать скопления воды в полостях изолятора. Технические характеристики изоляторов приведены в табл. 1.69—1.71.
Таблица 1.69
Штыревые изоляторы (см. рис. 1.3)
* На напряжение до 1 кВ. * * На напряжение свыше 1 кВ.
Таблица 1.70
Подвесные тарельчатые высоковольтные изоляторы (см. рис. 1.4)
Таблица 1.71
Полимерные линейные изоляторы для воздушных линий электропередачи (см. рис. 1.5)
При сооружении линий электропередачи с применением проводов SAX используются изоляторы финского производства типа SDI (табл. 1.72).
Таблица 1.72
Изоляторы типа SDI
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 61. Французские линейные корабли того периода
Глава 61. Французские линейные корабли того периода Франция оставалась основным морским конкурентом Британии, поэтому следует сказать несколько слов о тогдашних французских линкорах, выделив их принципиальные особенности. По внешнему облику тяжёлые единицы флота
Вводы и проходные изоляторы
Вводы и проходные изоляторы Вопрос. Что входит в объем испытаний вводов и проходных изоляторов?Ответ. В объем испытаний входит:измерение сопротивления изоляции;измерение tg? и емкости изоляции;испытание повышенным напряжением промышленной частоты;проверка качества
Подвесные и опорные изоляторы
Подвесные и опорные изоляторы Вопрос. Что входит в объем испытаний подвесных и опорных изоляторов?Ответ. В объем испытаний входит:измерение сопротивления изоляции подвесных и многоэлементных изоляторов;испытание повышенным напряжением промышленной частоты:опорных
Изоляторы и арматура
Изоляторы и арматура Вопрос. Какие изоляторы должны применяться на ВЛ?Ответ. На ВЛ напряжением 110 кВ и выше должны применяться подвесные изоляторы. Допускается применение стержневых и опорно-стержневых изоляторов.На ВЛ 35 кВ должны применяться подвесные или стержневые
ЛИНЕЙНЫЕ КОРАБЛИ
ЛИНЕЙНЫЕ КОРАБЛИ До середины XVII века не существовало строго установленного боевого строя кораблей в сражении. Перед баталией суда-противники выстраивались друг против друга тесным строем, а затем сближались для перестрелки либо абордажной схватки. Обычно сражение
1.8.34. Вводы и проходные изоляторы
1.8.34. Вводы и проходные изоляторы Вопрос 140. Как производится измерение сопротивления изоляции?Ответ. Производится мегаомметром на напряжение 2,5 кВ у вводов с бумажно-масляной изоляцией. Измеряется сопротивление изоляции измерительной и последней обкладок вводов
1.8.35. Подвесные и опорные изоляторы
1.8.35. Подвесные и опорные изоляторы Вопрос 144. Как производится измерение сопротивления изоляции подвесных и многоэлементных изоляторов?Ответ. Производится мегаомметром на напряжение 2,5 кВ только при положительных температурах окружающего воздуха. Проверку изоляторов
Изоляторы и арматура
Изоляторы и арматура Вопрос 312. Какие изоляторы должны применяться на ВЛ?Ответ. На ВЛ 110 кВ и выше должны применяться подвесные изоляторы, допускается применение стержневых и опорно-стержневых изоляторов.На ВЛ 35 кВ должны применяться подвесные или стержневые изоляторы.