3.7. Насосы трения
Трудоемкость изготовления центробежных насосов определяется сложностью формы лопастей рабочего колеса, являющегося иногда поверхностями двоякой кривизны. Поэтому в 1905 году появилась конструкция радиальной машины без лопастей – дисковый насос и другие конструкции.
Рис. 3.21. Дисковый насос
Возникновение концепции дискового насоса относится к 1850 году. Насос был изобретен в Соединенных Штатах Сарджентом (Sargent), который, взяв набор из 29 параллельных дисков, располагающихся с интервалом в несколько тысячных дюйма, поместил их в оболочку из металлической полосы и проделал в этой полосе множество отверстий, позволяющих жидкости проникать в конструкцию и выходить из нее. Это был первый пример насоса, действующего, исключительно, на основе принципа пограничного слоя и вязкостного сопротивления. Однако эффективность машины оставляла желать лучшего. Отметим, что в дальнейшем идея перфорированной оболочки в выходном сечении рабочего колеса нашла свое применение в разработках А. В. Бобкова и Б. В. Овсянникова для расширения области применения малоразмерных центробежных насосов.
Дальнейшее развитие идее дисковых машин (насосов и турбин) дал изобретатель Никола Тесла – американец сербского происхождения (1911 г.). Он убрал металлическую полосу, располагавшуюся вокруг дисков, улучшив тем самым производительность насоса, хотя он также настаивал на сохранении очень небольшого интервала между дисками, полагая, что если бы диски располагались слишком далеко друг от друга, то в определенный момент насос перестал бы качать. Это упорство в сохранении очень узкого промежутка между дисками значительно ограничивало возможности насоса.
Его машины состояли из большого числа кольцевых дисков, установленных перпендикулярно оси вращения. Рабочее тело, жидкое или газообразное, перемещалось за счет сил трения. В выполненных конструкциях число дисков колеблется от 18 до 174, расстояние между дисками от 0,1 до 0,5 миллиметров, а толщина – от 0,1 до 1,6 миллиметра.
Большой вклад в теорию и практику дисковых насосов с высокими антикавитационными качествами сделали в России и СССР (С. Шенберг – 1915, В. И. Поликовский – 1954, Б. В. Овсянников – 1971).
Затем, в 70-е годы нашего столетия, Макс Гурт (Max Gurth) – изобретатель из южной Калифорнии вновь обратился к этой концепции. Он обнаружил, что интервал между дисками может быть увеличен вплоть до 500 мм и, вопреки ожиданиям занимающихся насосами экспертов-теоретиков, при этих расстояниях принцип пограничного слоя и вязкостного сопротивления все еще был применим. Более того, поток оставался свободным от пульсаций и ламинарным. Одним из наиболее интересных открытий изобретателя стало то, что в отличие от других насосов, дисковый насос стал более эффективен при повышенной вязкости, превосходя эффективность аналогичных по размеру центробежных насосов при вязкостях жидкости выше, чем 250 cPs.
Первые патенты были получены им в конце 70-х, а в 1982 году он создал Корпорацию Discflo, занявшуюся производством и сбытом насосов. В перекачивающем механизме, носящем название Discpac, первоначально использовались плоские диски. В 1988 году было разработано и запатентовано второе поколение механизма Discpac, получившее название «высоконапорная конструкция». Она оказалась лучше приспособлена, чем плоские диски, к работе с сильно абразивными жидкостями, увлекаемыми воздухом жидкостями и к работе в изменяющихся условиях перекачки – таких, как значительные или резкие изменения скорости потока. Дисковые насосы чрезвычайно эффективны также для перекачки продуктов, требующих бережного обращения и чувствительных к воздействию сил среза.
Область применения по подачам и напорам между поршневыми и центробежными насосами вскоре после окончания первой мировой войны стала заполняться машинами, которые нельзя было отнести к уже известным. Интересно, что в качестве авторов в это время стали выступать фирмы, производящие эти насосы, очевидно выкупившие все права на их использование. Отличаясь немногими деталями, они появились почти одновременно в Германии и США.
Вихревой насос внешне напоминает центробежный. Он имеет ротор с ячейками на периферии, расположенный в корпусе с кольцевым зазором. Торцевой зазор и зазор по периферии между входным и выходным отверстиями, расположенными на цилиндрической поверхности корпуса, должны быть минимальными. Жидкость из ячеек рабочего колеса под влиянием центробежных сил переходит в корпус и, передав часть своей кинетической энергии, находящейся там среде, вернется в другие ячейки. Совершая винтообразное перемещение, каждая частица за время нахождения в насосе несколько раз побывает в роторе, получая от него энергию. В результате такого многоступенчатого механизма силового взаимодействия вихревые насосы могут при тех же габаритах, что и центробежные, иметь напор в несколько раз больший, но при меньшем значении коэффициента полезного действия. Отметим, что эти машины на английском и немецком языках обычно называют насосами с боковыми каналами.
В черпаковом насосе, появившемся в нескольких модификациях вскоре после вихревого в США и ФРГ, отводящее устройство в виде обтекаемого тела с каналом – черпака, размещено внутри вращающегося корпуса с радиальными лопатками, укрепленными на его боковых стенках. Наружная поверхность корпуса вращается в воздушной полости неподвижного кожуха. Жидкость подводится в кольцевой канал, а отводится из трубки идущей вдоль оси вращения. Вращение от ротора передается в результате обмена количества движения между частицами жидкости, сходящими с лопаток и находящимися в пространстве между неподвижным черпаком и ротором. В области малых подач эти насосы имеют преимущество перед центробежными и объемными. Кроме того, они могут перекачивать загрязненные и легкокипящие жидкости. За рубежом черпаковые насосы обычно называют насосами с трубкой Пито.
Рис. 3.22. Вихревой насос
Лабиринтные насосы, разработанные у нас в стране в институте гидромашиностроения, предназначены главным образом для подачи кислот и других агрессивных жидкостей, но маловязких жидкостей. Они могут быть осевыми и радиальными, но чаще используются осевые. Ротор и корпус имеют многозаходные нарезки противоположного направления. При вращении ротора в процессе обтекания винтовых поверхностей происходит силовое взаимодействие за счет интенсивного образования вихрей. Для химической промышленности применяются лабиринтные насосы с подачей до 10 литров в секунду при напоре до 150 метров. Часто лабиринтные насосы используют в качестве динамических уплотнений, которые обеспечивают герметичность только при движении рабочих органов.
Рис. 3.23. Черпаковый насос
Данный текст является ознакомительным фрагментом.