Детский парадокс
Детский парадокс
В математике имеется огромное число парадоксов и противоречий. Никто даже не знает сколько — так велика математика! Кстати, это обстоятельство ничуть не мешает нам её любить!
Тем нашим читателям, у кого подрастают дети, ещё предстоит хлебнуть из-за этой «парадоксальности»:
— Папа, существует ли самое большое число?
— Да, существует? — папа пытается отделаться от навязчивого почемучки.
— А что будет, если к нему прибавить единицу?
Очевидно, что ответ неудовлетворителен. Отец в затруднении.
— Нет, Не существует. Так как натуральный ряд стремится к бесконечности! — папа пытается продемонстрировать образованность.
— А можно это несуществующее число, ну, эту бесконечность, обозначить?
— Да, можно.
— А если отнять от этого не существующего числа единицу, мы получим существующее число?
— Нет!
— А если отнять от этого не существующего числа две единицы, мы получим существующее число?
— Нет!
<…>
— А если отнять от этого не существующего числа бесконечность натуральных чисел, мы получим существующее число? Ведь это бесконечности одинакового порядка!
— Э… Да! Получим.
— Тогда где, на каком числе несуществующее число превращается в существующее?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Неразрешимый спор. Парадокс «Еватл и Протагор»
Неразрешимый спор. Парадокс «Еватл и Протагор» Считается, что этот парадокс основан на реальных событиях. У софиста Протагора был ученик по имени Еватл (Эватл), обучавшийся у него искусству выступления в суде. По договору, который заключили между собой учитель и ученик,
Парадокс вероятности (обсуждение на семинаре «Междисциплинарные исследования»)
Парадокс вероятности (обсуждение на семинаре «Междисциплинарные исследования») С. Ёлкин. Если представить мысленный эксперимент с бросанием точки на плоскость, то исходным постулатом является то, что вероятность попасть в какую-либо конкретную точку плоскости равна
Парадокс причинности
Парадокс причинности Будущее, настоящее, прошедшее. Три «стадии», или же измерения, времени. Если существует возможность передать сигнал из будущего в прошлое, то возникает петля времени.Допустим, мы из некоторой лаборатории передаём сигнал на взрывное устройство,