ЛЕКЦИЯ № 6. Механические свойства металлов
ЛЕКЦИЯ № 6. Механические свойства металлов
1. Деформация и разрушение
Приложение нагрузки вызывает деформацию. В начальный момент нагружение, если оно не сопровождается фазовыми (структурными) изменениями, вызывает только упругую (обратимую) деформацию. По достижении некоторого напряжения деформация (частично) становится необратимой (пластическая деформация), необратимо при этом изменяются и строение металла и, следовательно, его свойства Зависимость деформации от напряжения изображается так называемой диаграммой растяжения. Условное напряжение:
? = P / F0 (кгс/мм2),
где P– сила;
F0 – начальное сечение, а ось абсцисс – относительная деформация:
? = ?l / l,
где ?l – приращение длины,
l – начальная длина.
Тангенс угла наклона – прямой: tg ? = ? / ? = Е – модуль нормальной упругости (в кгс/мм 2) – характеризует жесткость материала (сопротивление упругому деформированию), которая определяется силами межатомного взаимодействия, зависящими в первом приближении от температуры плавления металла. Поскольку легирование и термическая обработка очень слабо влияют на температуру плавления, модуль нормальной упругости можно рассматривать как структурно нечувствительную характеристику. У всех сталей Е ? 2 ?10 4 кгс/мм 2, а у алюминиевых сплавов Е ~ 0,7 ? 10 4 кгс/мм 2.
Условное напряжение, при котором нарушается пропорциональная зависимость между ? и ?, есть предел упругости (или предел пропорциональности).
Для технических целей (кроме упругих элементов) малое отклонение от пропорциональной зависимости не считается существенным, и обычно считается, что пластическая деформация наступает тогда, когда остаточная необратимая деформация ?пл. становится равной 0,2 %. Условное напряжение, при котором = 0,2 %, называется пределом текучести (на диаграмме – ?0,2) и характеризует сопротивление материала малой пластической деформации. Истинное напряжение достигает максимального значения в точке Z – при окончательном разрушении образца. Для высокопрочных и малопластичных материалов ?В > 150 кгс/мм 2, относительное сужение ? (изменение сужения) в месте разрыва (разрушения) равно менее 40 %, а определяется ? по формуле:
? = (Fо – Fх)Fо,
где F 0 – сечение образца до разрушения;
Fx – сечение в момент максимальной деформации.
Разрушение может быть двух видов, которые можно назвать «разделение» (repture) и «разрушение» (wacture). Разделение типично для высокопластичных материалов (обычно это металлы высокой чистоты), деформирование которых после достижения точки ? В приводит к 100 %-му сужению без образования поверхности разрушения. Во всех других случаях сужение достигает какого—то значения, после чего образец разрушается с образованием поверхностей разрушения.
Рис. 6. Виды разорванных образцов: а – разделение; б – разрушение с предварительной пластической деформацией; в – разрушение без предварительной пластической деформации.
Процессу разрушения предшествуют: упругая деформация и пластическая деформация.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Механические свойства древесины
Механические свойства древесины Механические свойства древесины более важны, так как от них зависят прочность и долговечность сооружений и изделий из дерева.Механическая прочность древесины – это ее возможность противостоять различным статическим и динамическим
Свойства металлов и сплавов
Свойства металлов и сплавов В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).Металл относится к
Механические свойства древесины
Механические свойства древесины Механические свойства древесины более важны, так как от них зависят прочность и долговечность сооружений и изделий из дерева.Механическая прочность древесины – это ее возможность противостоять различным статическим и динамическим
Физические и механические свойства
Физические и механические свойства Плотность стекол зависит от компонентов, входящих в их состав. Так, стекломасса, в больших количествах включающая оксид свинца, более плотная по сравнению со стеклом, состоящим, помимо прочих материалов, и из оксидов лития, бериллия или
ЛЕКЦИЯ № 4. Свойства древесины
ЛЕКЦИЯ № 4. Свойства древесины 1. Цвет, блеск и текстура древесины Цвет древесины зависит от климатических условий произрастания дерева. В умеренном климате древесина почти всех пород окрашена бледно, а в тропическом имеет яркую окраску. Влияние климатического фактора
2. Механические свойства металлов
2. Механические свойства металлов Механические свойства металлов определяются следующими характеристиками: предел упругости ?Т, предел текучести ?Е, предел прочности относительное удлинение ?, относительное сужение ? и модуль упругости Е, ударная вязкость, предел
ЛЕКЦИЯ № 8. Способы обработки металлов
ЛЕКЦИЯ № 8. Способы обработки металлов 1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах,
ЛЕКЦИЯ № 11. Сплавы цветных металлов
ЛЕКЦИЯ № 11. Сплавы цветных металлов 1. Цветные металлы и сплавы, их свойства и назначение Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы
ЛЕКЦИЯ № 12. Свойства неметаллических материалов
ЛЕКЦИЯ № 12. Свойства неметаллических материалов 1. Неметаллические материалы Еще во второй половине XX в. в нашей стране уделялось большое внимание применению неметаллических материалов в различных отраслях промышленности и народного хозяйства в целом. Было налажено
4.1. Основные механические свойства материалов
4.1. Основные механические свойства материалов Изготовление ювелирных изделий – процесс многоступенчатый и начинается всегда с литья, т. е. получения сплава в жидком состоянии, заливки его в форму, кристаллизации. В отдельных случаях сплав используют в виде
10.2. Механические свойства серебряно-медных сплавов
10.2. Механические свойства серебряно-медных сплавов Механические свойства сплавов серебра существенно зависят от содержания в них меди. Так, увеличение концентрации меди с 5 % (СрМ 950) до 20 % (СрМ 800) приводит к повышению прочности на 30 %, а твердости – на 60 % при
Алексеев Виктор Сергеевич
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉