7. Химико—термическая обработка: азотирование, ионное азотирование
7. Химико—термическая обработка: азотирование, ионное азотирование
Химико—термическая обработка – азотирование применяется с целью повышения твердости поверхности у различных деталей – зубчатых колес, гильз, валов и др. изготовленных из сталей 38ХМЮА, 38ХВФЮА, 18Х2Н4ВА, 40ХНВА и др. Азотирование – последняя операция в технологическом процессе изготовления деталей. Перед азотированием проводят полную термическую и механическую обработку и даже шлифование, после азотирования допускается только доводка со съемом металла до 0,02 мм на сторону. Азотированием называется химико—термическая обработка, при которой происходит диффузионное насыщение поверхностного слоя азотом. В результате азотирования обеспечиваются: высокая твердость поверхностного слоя (до 72 HRC), высокая усталостная прочность, теплостойкость, минимальная деформация, большая устойчивость против износа и коррозии. Азотирование проводят при температурах от +500 до +520 °C в течение 8–9 ч. Глубина азотированного слоя – 0,1–0,8 мм. По окончании процесса азотирования детали охлаждают до +200–300 °C вместе с печью в потоке аммиака, а затем – на воздухе.
Поверхностный слой не поддается травлению. Глубже него находится сорбитообразная структура. В промышленности широко применяется процесс жидкостного азотирования в расплавленных цианистых солях. Толщина азотированного слоя – 0,15—0,5 мм.
Азотированный слой не склонен к хрупкому разрушению. Твердость азотированного слоя углеродистых сталей – до 350 HV, легированных – до 1100 HV. Недостатки процесса – токсичность и высокая стоимость цианистых солей.
В ряде отраслей промышленности используется ионное азотирование, которое имеет ряд преимуществ перед газовым и жидкостным. Ионное азотирование осуществляется в герметичном контейнере, в котором создается разреженная азотсодержащая атмосфера. Для этой цели применяются чистый азот, аммиак или смесь азота и водорода. Размещенные внутри контейнера детали подключают к отрицательному полюсу источника постоянной электродвижущей силы Они выполняют роль катода. Анодом служит корпус контейнера. Между анодом и катодом включают высокое напряжение (500—1000 В) – происходит ионизация газа. Образующиеся положительно заряженные ионы азота устремляются к отрицательному полюсу – катоду. Возле катода создается высокая напряженность электрического поля. Высокая кинетическая энергия, которой обладали ионы азота, переходит в тепловую. Деталь за короткое время (15–30 мин) разогревается до от +470 до +580 °C, происходит диффузия азота вглубь металла, т. е. азотирование.
Ионное азотирование по сравнению с азотированием в печах позволяет сократить общую продолжительность процесса в 2–3 раза, уменьшить деформацию деталей за счет равномерного нагрева.
Ионное азотирование коррозионно—стойких сталей и сплавов достигается без дополнительной депассивирующей обработки. Толщина азотированного слоя – 1 мм и более, твердость поверхности – 500—1500 HV. Ионному азотированию подвергают детали насосов, форсунок, ходовые винты станков, валы и многое другое.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Обработка металла
Обработка металла Обработка металла включает в себя достаточно большое число работ различного вида, но каждая из них начинается с подготовки поверхности, которую предстоит обрабатывать. Что значит обработать металлическую деталь? Прежде всего проверить ее размеры и
Обработка отверстий
Обработка отверстий Сверление металлаПожалуй, трудно себе представить изготовление и сборку какого-либо механизма без того, чтобы не возникла необходимость в сверлении и дальнейшей обработке отверстий. Да и в других направлениях слесарного производства, будь то
Термическая обработка готовых изделий
Термическая обработка готовых изделий Термическая обработка проводится с готовой уже поковкой и служит для того, чтобы изменить структуру металла. От правильного ее выполнения зависит качество изделия и его долговечность.ЗакалкаОна предназначена для придания
Обработка сигналов
Обработка сигналов При выборе типа сенсорного устройства, используемого в роботе, необходимо решить вопрос чтения и обработки сигнала, поступающего от него. Vjui Многие сенсоры представляют собой датчики резистивного типа, что означает, что их сопротивление меняется в
6. Химико—термическая обработка: цементация, нитроцементация
6. Химико—термическая обработка: цементация, нитроцементация Для изменения химического состава, структуры и свойств поверхностного слоя деталей осуществляется их тепловая обработка в химически активной среде, называемая химико—термической обработкой. При ней
1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства
1. Углеродистые и легированные конструкционные стали: назначение, термическая обработка, свойства Из углеродистых качественных конструкционных сталей производят прокат, поковки, калиброванную сталь, сталь—серебрянку, сортовую сталь, штамповки и слитки. Эти стали
Термическая обработка
Термическая обработка Термической обработкой называется процесс тепловой обработки, суть которого в нагреве стекла до определенной температуры, выдержке при этой температуре и последующем охлаждении с заданной скоростью с целью изменения или свойств стекла, или формы
6. Термическая обработка ювелирных сплавов. Общие положения
6. Термическая обработка ювелирных сплавов. Общие положения Термическая обработка включает следующие основные операции: отжиг, закалку, старение и отпуск (для черных металлов). Применение того или другого вида термообработки диктуется теми требованиями, которые
6.1. Термическая обработка литейных сплавов
6.1. Термическая обработка литейных сплавов Согласно классификатору ювелирных сплавов (рис. 3.36) основными являются благородные сплавы на серебряной, золотой и платиновой основах, а также медные, алюминиевые и цинковые сплавы. Преимущественными операциями термообработки
13. Термическая обработка ювелирных сплавов
13. Термическая обработка ювелирных сплавов Основной вид термической обработки ювелирных сплавов – рекристаллизационный отжиг. Он назначается или как промежуточный этап между операциями холодной пластической деформации, или как заключительный – для того, чтобы
13.1. Термическая обработка сплавов на основе серебра
13.1. Термическая обработка сплавов на основе серебра Термически обрабатываются сплавы системы Ag – Си, так как медь ограниченно растворима в серебре и ее растворимость изменяется с температурой.Режим термообработки состоит в закалке сплава с температурой 700 °C в воде с
13.2. Термическая обработка сплавов на основе золота
13.2. Термическая обработка сплавов на основе золота Двойные сплавы золото – серебро термически не упрочняемые, так как серебро и золото неограниченно растворимы в твердом состоянии.Тройные сплавы системы Au – Ag – Си упрочняются термической обработкой. Эффект упрочнения
7.3.1. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА
7.3.1. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА Электрическая эрозия, т.е. разрушение контактов под действием электрических разрядов известна была давно. Много исследований было посвящено устранению или хотя бы уменьшению разрушения контактов.Исследованиями явления управляемой
38. Химико-термическая обработка стали. Назначение, виды и общие закономерности. Диффузионное насыщение сплавов металлами и неметаллами
38. Химико-термическая обработка стали. Назначение, виды и общие закономерности. Диффузионное насыщение сплавов металлами и неметаллами Химико-термической обработка (ХТО) – обработка с сочетанием термического и химического воздействия для изменения состава, структуры