1.1. История биотехнологии
1.1. История биотехнологии
Разумеется, начало истории биотехнологии может быть отнесено к глубокой древности, однако истинным моментом зарождения современной биотехнологии можно вполне обоснованно считать открытие в 1953 году Джимом Уотсоном и Френсисом Криком структуры ДНК. Их работа придала молекулярной биологии совершенно новое научное и общественное значение[1] , а предложенная модель двойной спирали была не только одновременно простой, элегантной и эффектной, но и позволила вполне разумным образом объяснить процесс воссоздания и репликации жизни на молекулярном уровне.
Открытие структуры ДНК привело к множеству новых исследований и открытий, наиболее важным из которых стала разработка техники «вырезания и склеивания». Эта работа, выполненная группой Пола Берга из Стэнфордского университета, позволила получить рекомбинантную ДНК, состоящую из кусочков от двух разных молекул ДНК[2]. Придуманная ими методика напоминает процесс монтажа в студии звукозаписи, когда оператор получает новую запись, просто вырезая и «склеивая» друг с другом куски разных магнитофонных лент. Вставив затем такую ленту в магнитофон, вы услышите единую запись, составленную из обрывков исходных мелодий.
За эту блестящую работу Пол Берг в 1980 году удостоился Нобелевской премии по химии. Интуиция с самого начала подсказывала ему, что рекомбинантные ДНК могут найти практическое применение в генной терапии. За несколько лет до этого, в 1973 году двое американских ученых (Герберт Бойер из Калифорнийского университета в Сан-Франциско и Стэнли Коэн из Стэнфордского университета) стали первыми на свете генными инженерами, так как именно им удалось не только использовать рестрикционные ферменты для избирательного «разрезания» и «соединения» кусочков ДНК, но и сделать этот процесс «промышленным». Вводя полученную таким образом составную или смешанную ДНК в организм бактерии, они смогли осуществить процесс размножения бактерий и получить миллионы «копий» своей искусственной ДНК. Это можно считать созданием первой «фабрики» по генетическому производству ДНК[3].
Новость быстро облетела научный мир, после чего множество ученых по всему миру занялись интенсивными исследованиями в области генной инженерии. Вскоре после этого генными манипуляциями всерьез заинтересовалась общественность, средства массовой информации и даже Конгресс США. Разумеется, публику напугали разговоры о возможности создания «смешанных» существ, и она настойчиво пыталась понять – не занимаются ли ученые конструированием современного Франкенштейна? Поэтому общее внимание было обращено на создание эффективной системы контроля над разработками и попытками их практического применения. Беспокойство общественности было столь велико, что в 1975 году более 100 представителей заинтересованных организаций из разных стран мира собрались в городке Алисомар (Калифорния) на конференцию, посвященную перспективам и потенциальным опасностям исследований в области рекомбинантных ДНК[4]. Конференция прошла под руководством самого Пола Берга и утвердила набор рекомендаций для Национального института здоровья США (National Institute of Health, NIH). Позднее именно эти рекомендации стали основой национальной политики США в этом научном направлении, отраженной в официальных документах 1976 года[5].
Научный успех Бойера и Коэна, сумевших внедрить определенный ген в бактерию и «размножить» его, с самого начала привлек внимание так называемых венчурных капиталистов, то есть предпринимателей, любящих вкладывать капитал с риском или в разработку и производство совершенно новых продуктов. Один из них, молодой и энергичный Роберт Свансон из Сан-Франциско, еще в 1976 году запросил Бойера и Коэна о возможности применения их технологии для организации коммерческого производства белковых продуктов, содержащих требуемые компоненты (в частности, Свансона интересовала возможность выпуска пищевых продуктов, содержащих инсулин человека)[6]. Уже в апреле этого же года Свансон и Бойер вложили по 500 долларов в организацию фирмы Genentech, ставшей первой в мире биотехнологической компанией. Почти немедленно в этой области возникла и торговая конкуренция, так как очень скоро была зарегистрирована и компания Biogen. Образно говоря, возник совершенно новый сектор наукоемкой продукции, а его первой целью стало производство коммерческих продуктов, содержащих инсулин человека.
Фирмы Genentech и Biogen выбрали различные технические средства для получения таких продуктов. Ученые Genentech бросили все свои силы на химический синтез человеческого гена, связанного с выработкой инсулина, в то время как Biogen стал развивать технику клонирования, причем выбор путей развития был обусловлен уже сложившимися обстоятельствами и условиями. Например, интерес Genentech к химически синтезируемому гену объяснялся тем, что последний не подпадал под ограничения, уже введенные Национальным институтом здоровья США, в то время как клонирование могло производиться только под контролем NIH.
Интересно и поучительно, что в начальный период развития фирма Genentech фактически представляла собой лишь зарегистрированное название, так как не имела ни денег, ни сотрудников, ни оборудования. Бойер обратился к двум своим коллегам в Национальном медицинском центре (City of Hope) с предложением заключить контракт на разработку методов синтеза инсулина человека. Речь шла об Артуре Риггзе и Кэйити Итакуре, которые в этот момент подали заявку в Национальный институт здоровья, пытаясь получить грант на изучение возможностей синтеза человеческого гормона соматостатина (эта задача выглядела более скромной, чем синтез инсулина, но ее решение открывало перспективы дальнейших разработок). Поэтому естественной кажется реакция Риггза, запросившего Бойера о возможности спонсорства фирмой Genentech сначала разработок по синтезу соматостатина. Получив положительный ответ, он образовал смешанную исследовательскую группу из сотрудников City of Hope и Genentech, которая сумела быстро добиться значительного успеха. Риггзу и Итакуре удалось внедрить кусочек ДНК человека (содержащий 21 нуклеотид) в бактерию кишечной палочки E.Coli, а затем (вместе с молодым химиком Хербом Хейнекером из лаборатории Бойера) и впервые продемонстрировать возможность функционирования искусственной ДНК в живой клетке.
Через шестнадцать месяцев команда исследователей не только успешно синтезировала ген соматостатина человека и клонировала его, но и смогла продемонстрировать возможность, как говорят биохимики, экспрессии протеинового гормона соматостатина в микробы[7], что стало первым примером успешной экспрессии белка в генетически модифицированные микробы вообще. Это достижение только подхлестнуло научную «гонку» в синтезе инсулина человека. Ценность метода Риггза – Итакура заключается в его универсальности, позволяющей использовать его для производства множества требуемых белков в бактериях-носителях. Очень быстро на его основе были разработаны разнообразные технологии, на которые было выдано много патентов (как в США, так и в других странах), а конечным результатом стало возникновение коммерческого производства фармацевтических продуктов, объем которого оценивается в миллиарды долларов. Забавно и очень поучительно, что упоминавшееся выше обращение Риггза и Итакуры к Национальному институту здоровья (с просьбой о гранте на разработку соматостатина) было отвергнуто институтом, специалисты которого посчитали проект слишком амбициозным и не имеющим практической ценности!
После успеха с синтезом соматостатина Свансон начал энергично подыскивать инвесторов для финансирования работ по синтезу инсулина. В июне 1978 года фирма Genentech наняла сотрудников и создала лабораторию вблизи аэропорта Сан-Франциско, а уже к концу августа (менее чем через три месяца!) объединенная команда City of Hope и Genentech получила инсулин человека, используя синтезированный ген. Казавшееся невозможным начинание увенчалось блестящим успехом. Замечательная история создания фирмы Genentech и возникновения целой отрасли промышленности на основе биотехнологии описана в книгах Холла и Эванса[8][9]. Особенную ценность этим событиям придает то, что речь идет об очень редкой ситуации, когда результаты фундаментальных, академических исследований смогли очень быстро привести к блестящему коммерческому успеху, тем более что речь шла о создании промышленности буквально из «ничего», а не о «раскрутке» производства на базе уже существующего мощного рынка фармакологических препаратов.
В наши дни, через тридцать лет после возникновения, биотехнология представляет собой огромный сектор промышленности и коммерции (оцениваемый примерно в триллион долларов), производящий сотни видов разнообразных биологических, медицинских и лекарственных средств[10], и поэтому предложенные истории могут служить поучительными примерами при обсуждении проблем нанотехнологий. Речь идет в первую очередь о двух описанных ниже важнейших концепциях развития науки и технологии, связанных с инновационной политикой и коммерциализацией научных достижений вообще.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
История «Магируса»
История «Магируса» Подавая в 1860 году заявку в мэрию родного города Ульма с просьбой зарегистрировать его небольшую мастерскую, Конрад Дитрих Магирус (1824–1895) вряд ли помышлял, что со временем она станет одной из самых известных и уважаемых автомобильных фирм мира. В
ИСТОРИЯ СОЗДАНИЯ
ИСТОРИЯ СОЗДАНИЯ Об этой стремительной боевой машине, столь полюбившейся нашим танкистам в предвоенные годы, написано и рассказано немало. И это не случайно! Для своего времени лёгкий колёсно-гусеничный танк БТ обладал прекрасными боевыми качествами, а его манёвренные
История ножа в бундесвере
История ножа в бундесвере Эта история начинается с загадки, на которую до сих пор нет точного ответа. При основании бундесвера в 1955 г. его руководство по неясным причинам решило практически полностью отказаться от холодного оружия: Ножи получили лишь подразделения
Биотехнологии
Биотехнологии Успехи биотехнологий в скором будущем позволят нам изменять нашу генетическую основу. На основе этого станет возможным «модифицировать» наш мозг для увеличения его интеллектуальных способностей. Однако вполне возможно, что подобные генные модификации
ИСТОРИЯ СОЗДАНИЯ
ИСТОРИЯ СОЗДАНИЯ В 1934 году Служба вооружения сухопутных войск (Heereswaffenamt) выдала задание на проектирование боевой машины ZW (Zugf?hrerwagen — машина командира роты) массой 15 т, вооружённой 37-мм пушкой. В конкурсе участвовали четыре фирмы: Friedrich Krupp AG, Rheinmetall-Borsig, MAN и Daimler-Benz. С осени
1. История развития стандартизации
1. История развития стандартизации Человек прошел долгий путь развития труда от грубых каменных топоров и наконечников из кремня для стрел до микросхем и информационного общества. На протяжении очень долгого времени трудовая деятельность человека совершенствовалась,
ИСТОРИЯ СОЗДАНИЯ
ИСТОРИЯ СОЗДАНИЯ Танки Т-34 перед атакой. Сталинградский фронт, осень 1942 года. (Фото из коллекции И. Мощанского)4 мая 1938 года в Москве состоялось расширенное заседание Комитета Обороны СССР. Вёл заседание В. И. Молотов, присутствовали И. В. Сталин, К. Е. Ворошилов, другие
34. История развития стандартизации
34. История развития стандартизации Одним из основополагающих и рубежных событий в истории стандартизации является основание Международного бюро мер и весов, а также Международная метрическая конвенция, подписанная в 1895 г. послами 19 государств.В России одним из первых
Тема ХІІ. БИОТЕХНОЛОГИИ, ИХ СУЩНОСТЬ, ПРОШЛОЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ И ПРИМЕНЕНИЯ
Тема ХІІ. БИОТЕХНОЛОГИИ, ИХ СУЩНОСТЬ, ПРОШЛОЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ И ПРИМЕНЕНИЯ Большинство из наших современников – инженеров-специалистов в какой-то мере готовы ответить на вопрос «технология», «технологический процесс», и могут в первую очередь рассказать о
ИСТОРИЯ СОЗДАНИЯ
ИСТОРИЯ СОЗДАНИЯ Прекрасно отреставрированный Pz.I Ausf.A во время парада в танковом музее бундесвера в г. Мюнстер. Германия, 1993 г.Как известно, положения Версальского договора запрещали Германии производить танки и иметь в составе армии танковые части. Но нет такого
4.4.1. История озонирования
4.4.1. История озонирования В 1840 г. немецкий ученый Шейнбейн, исследуя процессы разложения воды на водород и кислород при помощи электрической дуги, получил новый газ с резким специфическим запахом, который был им назван озоном. Затем были исследования других ученых по
5.1.1. История
5.1.1. История Серебро известно человечеству с древнейших времён, в своё время его добывали в виде самородков, т. е. не приходилось выплавлять из руд, и многие народы считали его священным металлом, например в Ассирии и Вавилоне. В Европе по количеству серебра судили о
5.2.1. История
5.2.1. История Об антибактериальных свойствах меди известно очень давно. В древней Руси для медицинских целей применяли, так называемую, «колокольную» воду. Получали её во время литья колоколов, когда еще раскаленную отливку остужали в емкостях, наполненных водой. Колокола
«ИСТОРИЯ САМОЛЕТА» 1 Ла-5
«ИСТОРИЯ САМОЛЕТА» 1 Ла-5 Ла-5 неизвестного подразделения, действовавшего летом 1943 года на Курском выступе. Необычная диагонально полоса белого цвета в хвостовой части фюзеляжа, частично закрывавшая надпись «От колхозников и колхозниц Горьковской области». Прототип