40. Энтропия и статический характер второго закона термодинамики
40. Энтропия и статический характер второго закона термодинамики
Известно, что в теории механики для изучения движения отдельных молекул применяются динамические закономерности. Молекулярно-кинетическая теория отличается от механики тем, что изучает системы, состоящие из большого количества молекул. Хаотическое движение частиц в таких системах подчиняется другим (статистическим) законам. Несмотря на то что движение каждой молекулы описывается механическими законами, вся совокупность частиц не рассматривается в теории механики, ее поведение изучается статистической физикой. Дело в том, что для всех частиц устанавливается среднее значение их характеристик – средняя скорость, среднее значение энергии и др. (средняя температура, среднее давление).
При таких статистических условиях усреднение характеристик существования любого термодинамического состояния вещества (например, газа) не является строго обязательным, а только имеет некоторую вероятность.
Самым простым примером является случай равенства скоростей всех молекул газа как наименьшая вероятность существования состояния данного вещества. Обозначим условно такую вероятность значением величины В случае неодинаковых скоростей возможное число их комбинаций велико, и существование состояния, при котором скорости частиц не равны, имеет вероятность W > W0, причем это отличие довольно значительно. Таким образом, термодинамической вероятностью называется величина:
ее значение намного больше единицы, в связи с чем ее также называют статистическим весом термодинамического состояния. Статистическая физика также устанавливает связь термодинамической вероятности с энтропией системы.
Прямая зависимость энтропии от логарифма термодинамической вероятности определяется выражением:
где R – постоянная Клайперона;
N0 – постоянная Авогадро.
Величина K является константой (или постоянной) Больцмана.
Следовательно, с увеличением энтропии увеличивается вероятность наступления того или иного термодинамического состояния. Причем наиболее вероятное состояние наступает при максимальном значении энтропии.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 4. Клипера второго поколения
Глава 4. Клипера второго поколения Крейсерские суда первого поколения?— деревянные фрегаты, корветы и клипера?— к началу 70-х годов XIX века уже устарели и были довольно изношены. Взамен Морское ведомство решило построить океанскую эскадру в составе четырех крейсерских
4. Характер воздушных боев
4. Характер воздушных боев В небе Кореи в вооруженное противоборство вступили реактивные истребители первого поколения, скорость которых (по сравнению со скоростью поршневых самолетов) возросла в полтора раза, а практический потолок — почти вдвое. Технический прогресс
ВЕРТОЛЕТЫ ВТОРОГО ПОКОЛЕНИЯ
ВЕРТОЛЕТЫ ВТОРОГО ПОКОЛЕНИЯ Вторая половина 50-х годов знаменуется в истории мирового вертолетостроения созданием первых вертолетов нового, второго поколения. К этому времени были в целом решены основные проблемы предыдущего периода: обеспечение надежности частей и
Изготовление второго демонстрационного устройства
Изготовление второго демонстрационного устройства Вторая модель представляет собой рычаг (см. рис. 16.13 и 16.14). Я изготовил модель рычага из дерева и пластика. Воздушная мышца и резиновая лента прикреплены к рычагу с помощью винтов. В точке опоры рычаг закреплен на
4.2.1. Важность закона Мура
4.2.1. Важность закона Мура Закон Мура долгое время связывали только с электронной промышленностью (чипы, коммуникационные системы, компьютеры), однако позднее оказалось, что им же определяется развитие и производство лекарственных препаратов, биоинформационных
34. Основные положения второго закона термодинамики
34. Основные положения второго закона термодинамики Второй закон термодинамики позволяет ответить на вопросы: возможно или нет развитие рассматриваемого процесса, какое направление процесса будет преобладающим, когда в термодинамической системе установится
39. Принцип возрастания энтропии и физический смысл второго закона термодинамики
39. Принцип возрастания энтропии и физический смысл второго закона термодинамики Исследуем понятие энтропии как функции состояния: Второй закон термодинамики можно сформу лировать в виде: Величина энтропии представляет собой полный диффереренциал, т. е. является
46. Основные дифференциальные уравнения термодинамики
46. Основные дифференциальные уравнения термодинамики Дифференциальные уравнения в термодинамике используются для исследования реальных газов, при теоретических (и практических) вычислениях.Рассмотрим следующие случаи.1. Независимыми переменными являются параметры p,
8.1.4.4 Проверка второго проекта
8.1.4.4 Проверка второго проекта Во второй проект документации должны быть включены все изменения, согласованные с заказчиком при проверке первого проекта, а комплектность поставки второго проекта по возможности должна соответствовать номенклатуре поставки, оговоренной
Бурханова Наталья
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉