3.1. Структура вещества в твердом состоянии

3.1. Структура вещества в твердом состоянии

В твердом состоянии большинство неорганических материалов (более 96 %) имеют кристаллическое строение, т. е. правильное, упорядоченное, периодическое расположение атомов, ионов или молекул в пространстве.

Характер расположения атомов, ионов или молекул в пространстве принято описывать с помощью кристаллической решетки. Если мысленно соединить центры тяжести атомов, ионов или молекул прямыми, то образуется пространственная решетка, в узлах которой находятся те частицы, из которых состоит вещество. Так как положение атомов в пространстве является периодическим, правильным, а следовательно, симметричным, то и кристаллическая решетка также будет обладать определенной симметрией.

Симметрией кристаллов называют их свойство совмещаться с собой при поворотах, отражениях, параллельных переносах или при комбинации этих операций.

На рис. 3.1 показаны пример правильного, периодического расположения атомов в пространстве и кристаллическая решетка.

Рис. 3.1. Схема расположения атомов в твердом теле.

В кристаллической решетке можно выделить минимальный объем, с помощью которого описываются положение атомов и симметрия решетки в целом. Этот параллелепипед называется элементарной ячейкой.

Таблица 3.1

Варианты кристаллических решеток

Ребро такого параллелепипеда называется периодом или параметром решетки. Величина параметра решетки соизмерима с размерами атома. Для металлов параметры решетки составляют 0,2–0,6 нм, в зависимости от размера атома и типа кристаллической решетки. Элементарные ячейки могут иметь прямые или косые углы, ребра параллелепипедов могут быть равны друг другу или не равны, а следовательно, у них разная симметрия.

По симметрии формы элементарные ячейки, и соответственно кристаллические решетки, разделены на три категории: низшую, среднюю и высшую. Низшая категория содержит три сингонии: триклинную, моноклинную и ромбическую. Средняя – также три сингонии: тригональную, тетрагональную и гексагональную. Высшая категория включает одну сингонию – кубическую (табл. 3.1).

Свойства вещества зависят от природы тех частиц, из которых оно состоит, типа связи и ее энергии, а также от типа кристаллической решетки. Так, например, углерод в твердом состоянии существует в двух кристаллических формах: в виде графита с гексагональной решеткой и в виде алмаза с кубической решеткой. Возможность существования одного и того же вещества в нескольких кристаллических формах называется аллотропией или полиморфизмом. Этим свойством обладают некоторые металлы (олово, железо, титан, марганец и др.).

Любое вещество в природе может существовать в трех агрегатных состояниях: газообразном, жидком и твердом. В подавляющем большинстве случаев в твердую фазу вещество переходит из жидкой.

Процесс перехода вещества из жидкого состояния в твердое называется кристаллизацией. В расплавленном, жидком состоянии металл не имеет правильного кристаллического строения. Однако расположение атомов не полностью хаотично. В жидкости имеются группы атомов с правильным расположением, характерным для кристаллической решетки данного вещества. Группы эти нестабильны из-за большой подвижности атомов. Они образуются, рассыпаются, распадаются, возникают в новых местах. Такие группы атомов служат зародышами кристаллов в процессе кристаллизации, происходит при температуре ниже температуры плавления. Эта температура является константой для каждого вещества. Так, например, температура плавления меди составляет 1083 °C, серебра – 960 °C и т. д. При температурах ниже указанных эти металлы пребывают в твердом состоянии.

Процесс кристаллизации начинается с зарождения мелких кристалликов – зародышей кристаллизации. Их образование носит случайный характер. Другими словами, возникновение кристалла может произойти в любой части объема жидкости. Одновременно формируется не один, а несколько кристаллов (в некоторых случаях множество). Скорость зарождения – это число кристалликов, появляющихся в единице объема в единицу времени.

Образованные кристаллики растут за счет присоединения атомов из жидкости. При этом грань растущего кристалла перемещается в сторону жидкой фазы. Линейная скорость перемещения грани растущего кристалла называется скоростью роста кристалла.

На рис. 3.2 приведен пример кристаллизации в схематическом виде. Скорость зарождения составляет 4 зародыша в секунду, скорость роста кристалла – 1 мм в секунду. За первую секунду в объеме образовалось 4 кристаллика (обозначены цифрой 1). За вторую еще 4 (обозначены цифрой 2), а ранее возникшие кристаллы выросли на 1 мм с каждой стороны. В следующую секунду образовалось еще 4 кристалла (обозначены цифрой 3), и выросли все, образованные ранее, и т. д.

Рис. 3.2. Кинетика процесса кристаллизации.

Скорость зарождения – 4 зародыша в секунду; скорость роста кристалла – 1 мм в секунду. Наименее симметрична триклинная сингония, наиболее симметрична – кубическая.

Как видно из приведенной схемы, форма растущего кристалла остается правильной, пока он окружен жидкостью со всех сторон. Однако в ходе кристаллизации количество жидкой фазы уменьшается, кристаллы сталкиваются и рост их в сторону друг друга, естественно, прекращается. Кристалл продолжает расти в тех направлениях, в которых он соприкасается с жидкостью. В связи с этим кристалл теряет правильность формы. Таким образом, структура металлов в твердом состоянии состоит из множества кристаллов неправильной формы.

Эти кристаллы называют зерном или кристаллитами, а саму структуру – поликристаллической.

Размер зерна металла зависит от скорости зарождения и скорости роста кристаллитов при кристаллизации. Чем выше скорость зарождения, тем меньше размер получаемого зерна. Чем выше скорость роста, тем оно крупнее.

В зависимости от состава жидкости при переходе ее в твердое состояние кристаллиты-зерна имеют разный состав. В частности, могут состоять из простого вещества – химического элемента, например чистого золота. Если расплав состоит не из одного, а из двух или более компонентов, то в результате кристаллизации возможны следующие виды взаимодействия:

1. Состав сплава таков, что соответствует химическому соединению. Тогда при кристаллизации все зерна однородны по составу, соответствующему этому химическому соединению, одинаковы по структуре. Так же как в случае кристаллизации чистого вещества, структура сплава однофазна.

2. Если в составе расплава присутствуют два или более компонентов, то в определенных случаях после кристаллизации состав всех зерен оказывается однородным и соответствует составу расплава. При этом структура всех зерен также одинакова и их кристаллическая решетка соответствует решетке одного из компонентов. Такое вещество называется твердым раствором. Например, при сплавлении золота и серебра в любых пропорциях образуется твердый раствор этих компонентов. Твердые растворы наиболее характерны для металлических сплавов. Два металла образуют твердый раствор замещения: атомы одного компонента замещают атомы другого компонента в его кристаллической решетке. На рис. 3.3 а приведен пример такого твердого раствора. В узлах кристаллической решетки находятся не только атомы золота (они показаны светлыми кружками), но и атомы серебра – темные кружки. Количество узлов, занятых атомами серебра, соответствует составу сплава, т. е. концентрации серебра в нем. Так, если сплав содержит 20 % Ag и 80 % Аи, то 20 % всех узлов кристаллической решетки заняты атомами серебра, а остальные 80 % – золота.

Рис. 3.3 а. Схема кристаллической решетки твердого раствора замещения.

Атомная концентрация Au: Ag = 80: 20.

Если атомы двух металлов мало отличаются по размерам (не более 13 %) и имеют одинаковые кристаллические решетки, то между ними образуются непрерывные твердые растворы. Это означает, что при любой концентрации компонентов структура сплава – твердый раствор. Пример такого взаимодействия – сплавы золота и серебра. Между этими двумя металлами существует неограниченная растворимость в твердом состоянии. Если атомы двух металлов значительно отличаются по размерам и металлы имеют разные кристаллические решетки, то они растворимы друг в друге ограниченно. Это значит, что твердый раствор существует только до определенной концентрации второго компонента. При увеличении концентрации выше растворимости образуется химическое соединение.

Твердые растворы могут образовываться и на базе химических соединений. Так, например, кристаллы чистого корунда (окиси алюминия AI2O3) бесцветны и называются лейкосапфиром. Если часть атомов алюминия замещена хромом, то цвет кристалла становится красным – это рубин, если титаном, то синим – сапфир. Интенсивность окраски зависит от концентрации хрома или титана. Таким образом, рубин – это твердый раствор хрома в кристаллической решетке корунда AI2O3, сапфир – твердый раствор титана в решетке корунда.

3. После кристаллизации состав зерен неоднороден: существуют зерна одного состава, имеющие определенное кристаллическое строение, и зерна другого состава со своим кристаллическим строением.

Такое происходит, например, при сплавлении меди и свинца. Их расплав представляет собой однородную жидкость, состав которой в любой точке одинаков. После кристаллизации часть зерен состоит из чистого свинца (100 % РЬ), часть – из чистой меди (100 % Си). Количество тех и других зерен определяется соотношением компонентов сплава. Так, если расплав состоял из 20 % РЬ и 80 % Си, то количество зерен свинца и меди будет находиться в пропорции 20: 80.

Приведенный пример является крайним случаем, и подобные ситуации, когда при кристаллизации образуются чистые компоненты, довольно редки. Чаще всего расплав кристаллизуется с образованием двух твердых растворов или твердого раствора и химического соединения.

В таком случае говорят, что сплав состоит из двух (если кристаллиты двух сортов) или из нескольких фаз. Под фазой понимается часть системы, имеющая определенный состав, строение и свойства.

Таким образом, структура большинства веществ, в частности металлов, в твердом состоянии образована множеством зерен-кристаллитов. Состав и кристаллическая решетка их могут быть одинаковы (однофазный сплав) или различны (двух– или многофазный сплав). Размер этих зерен редко превышает доли миллиметра. Для металлов это 10—100 мкм.

Получение единичных кристаллов достаточно крупного размера – десятки миллиметров и более – довольно сложная техническая задача. Она решена для получения синтетических минералов – ювелирных камней. Чтобы разобраться в материалах ювелирных изделий, полученных ковкой, штамповкой или методами литья, необходимо привести классификацию ювелирных материалов, поскольку в первую очередь от материала зависит общий вид изделия и его способ изготовления. Поэтому раздел 3.2 будет посвящен основам классификации ювелирных материалов.

Данный текст является ознакомительным фрагментом.