5.1. Человеческое зрение и алгоритмы сжатия изображений
5.1. Человеческое зрение и алгоритмы сжатия изображений
5.1.1. Какие свойства зрения нужно учитывать при построении стегоалгоритмов
Свойства СЧЗ можно разделить на две группы: низкоуровневые («физиологические») и высокоуровневые («психофизиологические»). Вплоть до середины 90-х годов исследователи принимали во внимание, главным образом, низкоуровневые свойства зрения. В последние годы наметилась тенденция построения стегоалгоритмов с учетом и высокоуровневых характеристик СЧЗ.
Выделим три наиболее важных низкоуровневых свойства, влияющих на заметность постороннего шума в изображении: чувствительность к изменению яркости изображения, частотная чувствительность и эффект маскирования.
Чувствительность к изменению яркости можно определить следующим образом [1]. Испытуемому показывают некоторую однотонную картинку (рис. 5.1(а)). После того, как глаз адаптировался к ее освещенности I, «настроился на нее», постепенно изменяют яркость вокруг центрального пятна. Изменение освещенности ?I продолжают до тех пор, пока оно не будет обнаружено. На рис. 5.1(б) показана зависимость минимального контраста ?I/I от яркости I (для удобства мы поменяли привычное расположение осей). Как видно из рисунка, для среднего диапазона изменения яркости, контраст примерно постоянен (аналогия с кратномасштабным анализом и вейвлетами!), тогда как для малых и больших яркостей значение порога неразличимости возрастает. Было установлено, что ?I ? 0.01 — 0.03I для средних значений яркости.
Рис. 5.1. Чувствительность к контрасту и порог неразличимости ?I
Интересно заметить, что результаты новейших исследований противоречат «классической» точке зрения и показывают, что при малых значениях яркости СЧЗ порог неразличимости уменьшается, то есть СЧЗ более чувствительна к шуму в этом диапазоне.
Частотная чувствительность СЧЗ проявляется в том, что человек гораздо более восприимчив к низкочастотному (НЧ), чем к высокочастотному (ВЧ) шуму. Это связано с неравномерностью амплитудно-частотной характеристики системы зрения человека. Экспериментально ее можно определить при помощи того же опыта, что и при яркостной чувствительности. Но на этот раз в центральном квадрате изменяются пространственные частоты до тех пор, пока изменения не станут заметными.
Элементы СЧЗ разделяют поступающий видеосигнал на отдельные компоненты. Каждая составляющая возбуждает нервные окончания глаза через ряд подканалов. Выделяемые глазом компоненты имеют различные пространственные и частотные характеристики, а также различную ориентацию (горизонтальную, вертикальную, диагональную) [2]. В случае одновременного воздействия на глаз двух компонентов со сходными характеристиками возбуждаются одни и те же подканалы. Это приводит к эффекту маскирования, заключающегося в увеличении порога обнаружения видеосигнала в присутствии другого сигнала, обладающего аналогичными характеристиками. Поэтому, аддитивный шум гораздо заметнее на гладких участках изображения, чем на высокочастотных, то есть в последнем случае наблюдается маскирование. Наиболее сильно эффект маскирования проявляется, когда оба сигнала имеют одинаковую ориентацию и местоположение.
Можно показать, что частотная чувствительность тесно связана с яркостной. Известно также и выражение для определения порога маскирования на основе известной яркостной чувствительности, что позволяет найти метрику искажения изображения, учитывающую свойства СЧЗ. Такого типа математические модели хорошо разработаны для случая квантования коэффициентов дискретного косинусного преобразования изображения, так как именно оно применяется в стандарте JPEG.
Эффект маскирования в пространственной области может быть объяснен путем построения стохастических моделей изображения. При этом изображение представляется в виде марковского случайного поля, распределение вероятностей которого подчиняется, например, обобщенному гауссовскому закону.
Таким образом, можно предложить следующую обобщенную схему внедрения данных в изображение:
1. Выполнить фильтрацию изображения при помощи ориентированных полосовых фильтров. При этом получим распределение энергии по частотно-пространственным компонентам.
2. Вычислить порог маскирования на основе знания локальной величины энергии.
3. Масштабировать значение энергии внедряемого ЦВЗ в каждом компоненте так, чтобы оно было меньше порога маскирования.
Многие алгоритмы встраивания информации, как мы увидим, так или иначе используют эту схему.
Высокоуровневые свойства СЧЗ пока редко учитываются при построении стегоалгоритмов. Их отличием от низкоуровневых является то, что эти свойства проявляются «вторично», обработавший первичную информацию от СЧЗ мозг выдает команды на ее «подстройку» под изображение. Перечислим основные из этих свойств.
1. Чувствительность к контрасту. Высококонтрастные участки изображения, перепады яркости обращают на себя значительное внимание.
2. Чувствительность к размеру. Большие участки изображения «заметнее» меньших размером. Причем существует порог насыщения, когда дальнейшее увеличение размера не существенно.
3. Чувствительность к форме. Длинные и тонкие объекты вызывают большее внимание, чем круглые однородные.
4. Чувствительность к цвету. Некоторые цвета (например, красный) «заметнее» других. Этот эффект усиливается, если фон заднего плана отличается от цвета фигур на нем.
5. Чувствительность к местоположению. Человек склонен в первую очередь рассматривать центр изображения.
6. Люди обычно внимательнее к изображениям переднего плана, чем заднего.
7. Если на изображении есть люди, в первую очередь человек обратит свое внимание на них. На фотографии человек обращает первоочередное внимание на лицо, глаза, рот, руки.
8. Чувствительность к внешним раздражителям. Движение глаз наблюдателя зависит от конкретной обстановки, от полученных им перед просмотром или во время него инструкций, дополнительной информации.
Данный текст является ознакомительным фрагментом.