§ 12. Мореходные качества судов. Часть 1
§ 12. Мореходные качества судов. Часть 1
Мореходными качествами должны обладать как гражданские суда, так и военные корабли.
Изучением этих качеств с применением математического анализа занимается специальная научная дисциплина – теория судна.
Если математическое решение вопроса невозможно, то прибегают к опыту, чтобы найти необходимую зависимость и проверить выводы теории на практике. Только после всестороннего изучения и проверки на опыте всех мореходных качеств судна приступают к его созданию.
Мореходные качества в предмете «Теория судна» изучаются в двух разделах: статике и динамике судна. Статика изучает законы равновесия плавающего судна и связанные с этим качества: плавучесть, остойчивость и непотопляемость. Динамика изучает судно в движении и рассматривает такие его качества, как управляемость, качку и ходкость.
Познакомимся с мореходными качествами судна.
Плавучестью судна называется его способность держаться на воде по определенную осадку, неся предназначенные грузы в соответствии с назначением судна.
На плавающее судно всегда действуют две силы: а) с одной стороны, силы веса, равные сумме веса самого судна и всех грузов на нем (вычисленные в тоннах); равнодействующая сил веса приложена в центре тяжести судна (ЦТ) в точке G и всегда направлена по вертикали вниз; б) с другой стороны, силы поддержания, ил и силы плавучести (выраженные в тоннах), т. е. давление воды на погруженную часть корпуса, определяемое произведением объема погруженной части корпуса на объемный вес воды, в которой судно плавает. Если эти силы выразить равнодействующей, приложенной в центре тяжести подводного объема судна в точке С, называемой центром величины (ЦВ), то эта равнодействующая при всех положениях плавающего судна всегда будет направлена по вертикали вверх (рис. 10).
Объемным водоизмещением называется объем погруженной части корпуса, выраженный в кубических метрах. Объемное водоизмещение служит мерой плавучести, а вес вытесняемой им воды называется весовым водоизмещением D) и выражается в тоннах.
По закону Архимеда вес плавающего тела равен весу объема жидкости, вытесненной этим телом,
D = Р = Vy,
где у – объемный вес забортной воды, т/м3, принимаемый в расчетах равным 1,000 для пресной воды и 1,025 – для морской воды.
Рис. 10. Силы, действующие на плавающее судно, и точки приложения равнодействующих этих сил.
Так как вес плавающего судна Р всегда равен его весовому водоизмещению D, а их равнодействующие направлены противоположно друг другу по одной вертикали, и если обозначить координаты точки G и С по длине судна соответственно xg и хc, по ширине уg и уc и по высоте zg и zc, то условия равновесия плавающего судна можно сформулировать следующими уравнениями:
Р = D; xg = хc.
Вследствие симметрии судна относительно ДП очевидно, что точки G и С должны лежать в этой плоскости, тогда
yg = yc = 0.
Обычно центр тяжести надводных судов G лежит выше центра величины С, в таком случае
Zg › Zc
Иногда объем подводной части корпуса удобнее выразить через главные размерения судна и коэффициент общей полноты, т. е.
V = LBTб,
тогда весовое водоизмещение может быть представлено в виде
D = LBTбy.
Если обозначить через Vn полный объем корпуса до верхней палубы, при условии водонепроницаемости закрытия всех бортовых отверстий, то получим
Vn › V
Разность Vn – V, представляющая некоторый объем водонепроницаемого корпуса выше грузовой ватерлинии, носит название запаса плавучести. При аварийном попадании воды внутрь корпуса судна увеличится его осадка, но судно останется на плаву, благодаря запасу плавучести. Таким образом, запас плавучести будет тем больше, чем больше высота надводного непроницаемого борта. Следовательно, запас плавучести является важной характеристикой судна, обеспечивающей его непотопляемость. Он выражается в процентах от нормального водоизмещения и имеет следующие минимальные значения: для речных судов 10-15%, для танкеров 10-25 %, для сухогрузных судов 30-50%, для ледоколов 80-90%, а для пассажирских судов 80-100%.
Рис. 11. Строевая по шпангоутам
Вес судна Р (весовая нагрузка) И координаты центра тяжести определяются расчетом, учитывающим вес каждой детали корпуса, механизмов, предметов оборудования, снабжения, запасов, грузов, людей, их багажа и всего находящегося на судне. Для упрощения вычислений предусматривается объединение отдельных наименований по специальности в статьи, подгруппы, группы и разделы нагрузки. Для каждого из них подсчитывается вес и статический момент.
Учитывая, что момент равнодействующей силы равен сумме моментов составляющих сил относительно той же плоскости, после суммирования по всему судну весов и статических моментов, определяют координаты центра тяжести судна G. Объемное водоизмещение, а также координаты центра величины С по длине от миделя хc и по высоте от основной линии zc определяют по теоретическому чертежу методом трапеции в табличной форме.
Для этой же цели пользуются вспомогательными кривыми, так называемыми строевыми, вычерченными также по данным теоретического чертежа.
Различают две кривые: строевую по шпангоутам и строевую по ватерлиниям.
Строевая по шпангоутам (рис. 11) характеризует распределение объема подводной части корпуса по длине судна. Она строится следующим способом. Пользуясь методом приближенных вычислений, определяют по теоретическому чертежу площади погруженной части каждого шпангоута (w). По оси абсцисс откладывают в выбранном масштабе длину судна и на нее наносят положение шпангоутов теоретического чертежа. На ординатах, восстановленных из этих точек, откладывают в определенном масштабе соответствующие площади вычисленных шпангоутов.
Концы ординат соединяют плавной кривой, которая и является строевой по шпангоутам.
Рис. 12. Строевая по ватерлиниям.
Строевая по ватерлинии (рис. 12) характеризует распределение объема подводной части корпуса по высоте судна. Для ее построения по теоретическому чертежу подсчитывают площади всех ватерлиний (5). Эти площади в избранном масштабе откладывают по соответствующим горизонталям, расположенным по осадкам судна, в соответствии с положением данной ватерлинии. Полученные точки соединяют плавной кривой, которая и является строевой по ватерлиниям.
Рис. 13. Кривая грузового размера.
Эти кривые служат следующими характеристиками:
1) площади каждой из строевых выражают в соответствующем масштабе объемное водоизмещение судна;
2) абсцисса центра тяжести площади строевой по шпангоутам, измеренная в масштабе длины судна, равна абсциссе центра величины судна хc;
3) ордината центра тяжести площади строевой по ватерлиниям, измеренная в масштабе осадок, равна ординате центра величины судна zc. Грузовой размер представляет собой кривую (рис. 13), характеризующую объемное водоизмещение судна V в зависимости от его осадки Т. По этой кривой можно определить водоизмещение судна в зависимости от его осадки или решить обратную задачу.
Эта кривая строится в системе прямоугольных координат на основании предварительно вычисленных объемных водоизмещении по каждую ватерлинию теоретического чертежа. На оси ординат в выбранном масштабе откладывают осадки судна по каж- дую из ватерлиний и через них проводят горизонтали, на которых, также в определенном масштабе, откладывают значение водоизмещения, полученное для соответствующих ватерлиний. Концы полученных отрезков соединяют плавной кривой, которая и называется грузовым размером.
Пользуясь грузовым размером, можно определить изменение средней осадки от приема или расходования груза или по заданному водоизмещению определить осадку судна и т. п.
Остойчивостью называется способность судна противостоять, силам, вызвавшим его наклонение, и после прекращения действия этих сил возвращаться в первоначальное положение.
Наклонения судна возможны по разным причинам: от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов и пр.
Наклонение судна в поперечной плоскости называют креном , а в продольной плоскости – дифферентом ; углы, образующиеся при этом, обозначают соответственно O и y,
Различают начальную остойчивость , т. е. остойчивость при малых углах крена, при которых кромка верхней палубы начинает входить в воду (но не более 15° для высокобортных надводных судов), и остойчивость при больших наклонениях .
Представим себе, что под действием внешних сил судно получило крен на угол 9 (рис. 14). Вследствие этого объем подводной части судна сохранил свою величину, но изменил форму; по правому борту в воду вошел дополнительный объем, а по левому борту равновеликий ему объем вышел из воды. Центр величины переместился из первоначального положения С в сторону крена судна, в центр тяжести нового объема – точку С1. При наклонном положении судна сила тяжести Р, приложенная в точке G, и сила поддержания D, приложенная в точке С, оставаясь перпендикулярными к новой ватерлинии В1Л1 образуют пару сил с плечом GK, являющимся перпендикуляром, опущенным из точки G на направление сил поддержания.
Если продолжить направление силы поддержания из точки С1 до пересечения с ее первоначальным направлением из точки С, то на малых углах крена, соответствующих условиям начальной остойчивости, эти два направления пересекутся в точке М, называемой поперечным метацентром .
Расстояние между метацентром и центром величины МС называется поперечным мета центрическим радиусом , обозначаемым р, а расстояние между точкой М и центром тяжести судна G – поперечной метацентрической высотой h0 . На основании данных рис. 14 можно составить тождество
h0 = p + zc – zg.
В прямоугольном треугольнике GMR угол у вершины М будет равен углу 0. По его гипотенузе и противолежащему углу можно определить катет GK, являющийся плечо м восстанавливающей судно пары GK=h0 sin 8, а восстанавливающий момент будет равен Мвосст = DGK. Подставляя значения плеча, получим выражение
Мвосст = Dh0 * sin 0,
Рис. 14. Силы, действующие при крене судна.
Взаимное положение точек М и G позволяет установить следующий признак, характеризующий поперечную остойчивость: если метацентр расположен выше центра тяжести, то восстанавливающий момент положителен и стремится вернуть судно в исходное положение, т. е. при накренении судно будет остойчиво, наоборот, если точка М находится ниже точки G, то при отрицательном значении h0 момент отрицателен и будет стремиться увеличивать крен, т. е. в этом случае судно неостойчиво. Возможен случай, когда точки М и G совпадают, силы Р и D действуют по одной вертикальной прямой, пары сил не возникает, и восстанавливающий момент равен нулю: тогда судно надо считать неостойчивым, так как оно не стремится вернуться в первоначальное положение равновесия (рис. 15).
Метацентрическую высоту для характерных случаев нагрузки вычисляют в процессе проектирования судна, и она служит ме- рой остойчивости. Значение поперечной метацентрической высоты для основных типов судов лежит в пределах 0,5-1,2 м и лишь у ледоколов достигает 4,0 м.
Для увеличения поперечной остойчивости судна необходимо снижать его центр тяжести. Это чрезвычайно важный фактор всегда надо помнить, особенно при эксплуатации судна, и вести строгий учет за расходованием топлива и воды, хранящихся в междудонных цистернах.
Продольная метацентрическая высота H0 рассчитывается аналогично поперечной, но так как ее величина, выражается в десятках или даже в сотнях метров, всегда весьма велика – от одной до полутора длин судна, то после проверочного расчета продольную остойчивость судна практически не рассчитывают, ее величина интересна только в случае определения осадки судна носом или кормой при продольных перемещениях грузов или при затоплении отсеков по длине судна.
Рис. 15. Поперечная остойчивость судна в зависимости от расположения грузов: а – положительная остойчивость; б – положение равновесия – судно неостойчиво; в – отрицательная остойчивость.
Вопросам остойчивости судна придается исключительно важное значение, и поэтому обычно, кроме всех теоретических вычислений, после постройки судна проверяют истинное положение его центра тяжести путем опытного кренования, т. е. поперечного наклонения судна путем перемещения груза определенного веса, называемого кренбалластом .
Все полученные ранее выводы, как уже упоминалось, практически справедливы при начальной остойчивости, т. е. при крене на малые углы.
При расчетах поперечной остойчивости на больших углах крена (продольные наклонения на практике не бывают большими) определяют переменные положения центра величины, метацентра, поперечного метацентрического радиуса и плеча восстанавливающего момента GK для различных углов крена судна. Такой расчет делают начиная от прямого положения через 5- 10° до того угла крена, когда восстанавливающее плечо превращается в нуль и судно приобретает отрицательную остойчивость.
По данным этого расчета для наглядного представления об остойчивости судна на больших углах крена строят диаграмму статической остойчивости (ее также называют диаграммой Рида), показывающую зависимость плеча статической остойчивости (GK) или восстанавливающего момента Мвосcт от угла крена 8 (рис. 16). На этой диаграмме по оси абсцисс откладывают углы крена, а по оси ординат – значение восстанавливающих моментов или плечи восстанавливающей пары, так как при равнообъемных наклонениях, при которых водоизмещение судна D остается постоянным, восстанавливающие моменты пропорциональны плечам остойчивости.
Рис. 16. Диаграмма статической остойчивости.
Диаграмму статической остойчивости строят для каждого характерного случая нагрузки судна, и она следующим образом характеризует остойчивость судна:
1) на всех углах, при которых кривая расположена над осью абсцисс, восстанавливающие плечи и моменты имеют положительное значение, и судно имеет положительную остойчивость. При тех углах крена, когда кривая расположена под осью абсцисс, судно будет неостойчивым;
2) максимум диаграммы определяет предельный угол крена 0 мах и предельный кренящий момент при статическом наклонении судна;
3) угол 8, при котором нисходящая ветвь кривой пересекает ось абсцисс, называется углом заката диаграммы . При этом угле крена восстанавливающее плечо становится равным нулю;
4) если на оси абсцисс отложить угол, равный 1 радиану (57,3°), и из этой точки восставить перпендикуляр до пересечения с касательной, проведенной к кривой из начала координат, то этот перпендикуляр в масштабе диаграммы будет равен начальной метацентрической высоте h0.
Большое влияние на остойчивость оказывают подвижные, т. е. незакрепленные, а также жидкие и сыпучие грузы, имеющие свободную (открытую) поверхность. При наклонении судна эти грузы начинают перемещаться в сторону крена и, как следствие, центр тяжести всего судна уже не будет находиться в неподвижной точке G, а начнет тоже перемещаться в ту же сторону, вызывая уменьшение плеча поперечной остойчивости, что равносильно уменьшению метацентрической высоты со всеми вытекающими из этого последствиями. Для предотвращения таких случаев все грузы на судах должны быть закреплены, а жидкие или сыпучие должны быть погружены в емкости, исключающие всякое переливание или пересыпание грузов.
При медленном действии сил, создающих кренящий момент, судно, наклоняясь, остановится тогда, когда кренящий и восстанавливающий моменты сравняются. При внезапном действии внешних сил, таких, как порыв ветра, натяжение буксира на борт, качка, бортовой залп из орудий и т. п., судно, наклоняясь, приобретает угловую скорость и даже с прекращением действия этих сил будет продолжать крениться по инерции на дополнительный угол до тех пор, пока не израсходуется вся его кинетическая энергия (живая сила) вращательного движения судна и его угловая скорость не превратится в нуль. Такое наклонение судна под действием внезапно приложенных сил называется динамическим наклонением . Если при статическом кренящем моменте судно плавает, имея лишь некоторый крен 0СТ, то в случае динамического действия того же кренящего момента оно может опрокинуться.
При анализе динамической остойчивости для каждого водоизмещения судна строят диаграммы динамической остойчивости, ординаты которых представляют в определенном масштабе площади, образованные кривой моментов статической остойчивости для соответствующих углов крена, т. е. выражают работу восстанавливающей пары при наклонении судна на угол 0, выраженный в радианах. При вращательном движении, как известно, работа равна произведению момента на угол поворота, выраженный в радианах,
Т1 = Мkp0.
По этой диаграмме все вопросы, связанные с определением динамической остойчивости, можно решить следующим образом (рис. 17).
Угол крена при динамически приложенном кренящем моменте можно найти, нанеся на диаграмму в том же масштабе график работы кренящей пары; абсцисса точки пересечения этих двух графиков дает искомый угол 0ДИН.
Если в частном случае крепящий момент имеет постоянное значение, т. е. Мкр = const, то работа будет выражаться
Т2 = Мkp0.
а график будет иметь вид прямой, проходящей через начало координат.
Для того, чтобы построить эту прямую на диаграмме динамической остойчивости, необходимо отложить по оси абсцисс угол, равный радиану, и провести из полученной точки ординату. Отложив на ней в масштабе ординат величину Мкр в виде отрезка Nn (рис. 17), надо провести прямую ON, которая является искомым графиком работы кренящей пары.
Рис. 17. Определение угла крена и предельного динамического наклонения по диаграмме динамической остойчивости.
На этой же диаграмме показан угол динамического наклонения 0ДИН, определяемый как абсцисса точки пересечения обоих графиков.
С увеличением момента Мкр секущая ON может занять предельное положение, обратившись во внешнюю касательную ОТ, проведенную из начала координат к диаграмме динамической остойчивости. Таким образом, абсцисса точки касания будет искодинмах мым предельным углом динамических наклонений 0 Ордината этой касательной, соответствующая радиану, выражает предельный кренящий момент при динамических наклонениях Мкрмах.
При плавании судно часто подвергается динамическому воздействию внешних сил. Поэтому умение определить динамический кренящий момент при решении вопроса об остойчивости судна имеет большое практическое значение.
Изучение причин гибели судов приводит к выводу, что в основном суда гибнут из-за потери остойчивости. Для ограничения потери остойчивости в соответствии с различными условиями плавания, Регистром Союза ССР разработаны Нормы остойчивости судов транспортного и промыслового флота. В этих нормах основным показателем является способность судна сохранять положительную остойчивость при совместном действии на него бортовой качки и ветра. Судно отвечает основному требованию Норм остойчивости, если при наихудшем варианте загрузки его МКР остается меньше MОПР.
При этом минимальный опрокидывающий момент судна определяется по диаграммам статической или динамической остойчивости с учетом влияния свободной поверхности жидких грузов, бортовой качки и элементов расчета парусности судна для различных случаев нагрузки судна.
Нормами предусматривается целый ряд требований к остойчивости, например: MКР ‹ MОПР, коэффициент запаса остойчивости
метацентрическая высота должна иметь положительное значение, угол заката диаграммы статической остойчивости должен быть не менее 60°, а с учетом обледенения – не менее 55° и т. п. Обязательное соблюдение этих требований при всех случаях нагрузки дает право считать судно остойчивым.
Непотопляемостью судна называется его способность сохранять плавучесть и остойчивость после затопления части внутренних помещений водой, поступившей из-за борта.
Непотопляемость судна обеспечивается запасом плавучести и сохранением положительной остойчивости при частично затопленных помещениях.
Если судно получило пробоину в наружном корпусе, то количество воды Q, вливающееся через нее, характеризуется выражением
где S – площадь пробоины, м?;
g – 9,81 м/сек?
Н – отстояние центра пробоины от ватерлинии, м.
Даже при незначительной пробоине количество воды, поступающее внутрь корпуса, будет так велико, что справиться с нею отливные насосы не в состоянии. Поэтому водоотливные средства ставят на судне исходя из расчета только удаления воды, поступающей уже после заделки пробоины или через неплотности в соединениях.
Чтобы предотвратить распространение по судну воды, вливающейся в пробоину, предусматривают конструктивные мероприятия: корпус делят на отдельные отсеки водонепроницаемыми переборками и палубами . При таком делении в случае получения пробоины затопится один или несколько ограниченных отсеков, отчего увеличится осадка судна и соответственно уменьшится высота надводного борта и запас плавучести судна.