Глава II. По ту сторону «звукового барьера»
Глава II. По ту сторону «звукового барьера»
В этой главе речь идет о появлении авиационных двигателей нового типа — турбореактивных, о вызванной ими технической революции в авиации, о том, как с их помощью удалось преодолеть «звуковой барьер», а также о слабостях этих двигателей, препятствующих дальнейшей борьбе за увеличение скорости полета.
Рекорд скорости, установленный в 1939 году, был последним рекордом поршневого двигателя. Дальнейший стремительный прогресс авиационной техники связан уже с двигателем принципиально иного типа — турбореактивным.
Появление турбореактивного двигателя сразу перенесло штурм «звукового барьера» с дальних на ближние подступы. Уже первые появившиеся после войны самолеты с турбореактивными двигателями достигли скорости полета, близкой к 1000 километров в час, а затем и перешагнули этот рубеж.
Секрет успеха турбореактивного двигателя прост — при тех же размерах и весе, что и поршневой, он в состоянии развить в условиях скоростного полета значительно большую (в 10–20 раз) мощность. Более того, с ростом скорости полета мощность турбореактивного двигателя все время возрастает.
В чем же заключается принципиальное отличие турбореактивного двигателя от поршневого?
Оказывается, дело в количестве воздуха, которое может пройти через двигатель данных размеров в единицу времени. Ведь чем больше воздуха проходит через двигатель, тем больше топлива в нем сгорает, больше выделяется тепла и, следовательно, увеличивается мощность двигателя. Но почему через турбореактивный двигатель проходит намного больше воздуха, чем через поршневой? И в этом ничего удивительного нет. Через турбореактивный двигатель воздух течет непрерывно. Кроме того, для этого течения предоставлена большая часть поперечного, или миделевого, как его называют, сечения двигателя. Иначе обстоит дело в поршневом двигателе. В его цилиндры воздух втекает периодически. К тому же сечение впускных отверстий в этом двигателе во много раз меньше его миделевого сечения.
Естественно поэтому, что воздуха в поршневой двигатель поступает в десятки раз меньше, чем в турбореактивный.
Так переход от поршневых к турбореактивным двигателям позволил резко увеличить мощность силовой установки самолета и тем самым повысить скорость полета. Но скорость полета должна непрерывно расти, а это требует увеличения тяги двигателя.
Поэтому борьба за скорость полета для турбореактивного двигателя — это борьба за тягу. Неудивительно, что с момента появления турбореактивных двигателей их тяга непрерывно увеличивается.
Первые турбореактивные двигатели имели тягу 700–800 килограммов, а новейшие реактивные самолеты снабжены двигателями, тяга которых превышает 10 тонн 2*.
Можно ли увеличить тягу турбореактивного двигателя без значительного увеличения его размеров и веса? Да, можно.
Для этого нужно увеличить либо количество воздуха, проходящего через двигатель в секунду, либо скорость истечения газов из него.
Для увеличения расхода воздуха проще всего, конечно, увеличить диаметр двигателя. Но это более всего нежелательно, если учесть, как вредно лобовое сопротивление при больших скоростях полета. Другой путь — увеличение скорости, с которой воздух входит в двигатель, но это неизбежно приводит к увеличению потерь давления в нем и сильно ухудшает работу двигателя. Да и увеличить эту скорость можно только до определенного предела — до скорости звука.
2* По журналу «Эркрафт инжиниринг», апрель 1963 г., и др.
Воздухозаборное отверстие турбореактивного двигателя почти равно по сечению миделевому.
Наконец, существует и еще один путь, который используется конструкторами, — увеличение сечения для прохода воздуха при том же общем диаметре двигателя. Для этого нужно убрать все, что мешает течь воздуху через двигатель, «расчистить» газовоздушный тракт — вынести оттуда разные агрегаты, уменьшить до минимума диаметр втулки компрессора и пр. В последнее время преимущественное применение получили двигатели с осевым компрессором, а более распространенные ранее двигатели с центробежным компрессором отошли на второй план. Одна из причин этого как раз в том, что через двигатели с осевым компрессором при одинаковом диаметре проходит больше воздуха 3*.
Но совершенно яснр, что такие возможности увеличения расхода воздуха через двигатель ограничены, хотя именно за этот счет и шло до сих пор главным образом увеличение тяги турбореактивных двигателей.
Очевидно, что для увеличения тяги, без чего нельзя повысить скорость полета, остается лишь вторая возможность — увеличение скорости истечения газов из двигателя.
Все видели, как из чайника со свистом вырывается струя пара. Почему она появляется только тогда, когда вода закипает? Ответ очевиден: только в этом случае пара образуется так много, что давление внутри чайника повышается и пар, приподнимая крышку, с силой устремляется наружу.
3* Об устройстве и работе различных авиационных двигателей (в частности, о двигателях с осевым и центробежным компрессором) подробнее рассказано в научно- популярной брошюре К. Гильзина «Воздушно-реактивные двигатели», Военгиз, 1956.
Большой и маленький — сравнение размеров мощного турбореактивного двигателя тягой 7–8 тонн и маломощного двигателя тягой примерно 200 килограммов.
Значит, чтобы скорость истечения была высокой, нужно увеличить давление. Поэтому первой напрашивается мысль — для повышения скорости истечения нужно увеличить давление воздуха, выходящего из компрессора, то есть сильнее сжимать воздух в нем.
Однако такой вывод оказывается поспешным. В действительности, если сильнее сжать воздух в компрессоре, то скорость истечения либо увеличится очень незначительно, либо даже… уменьшится. Это объясняется тем, что более сильное сжатие воздуха в компрессоре требует большей затраты работы. Но чтобы турбина двигателя, приводящая компрессор в действие, развивала большую мощность, должно быть большим и расширение газов в ней. Поэтому может оказаться, что давление воздуха после компрессора и, следовательно, давление газов перед турбиной возрастет, а давление и температура газов з а турбиной в результате более сильного расширения в ней не только не возрастут, а даже снизятся. Снизится поэтому и скорость истечения газов, а значит — и тяга. Если все же развитие турбореактивных двигателей связано с непрерывным увеличением сжатия воздуха в компрессоре, то это делается не для повышения тяги, а для снижения расхода топлива на 1 килограмм тяги, то есть для повышения экономичности двигателя.
Для увеличения скорости истечения газов практически остается один путь — повышение их температуры. Чтобы увеличить скорость вдвое, температура газов должна возрасти в четыре раза 4*. Чтобы, например, увеличить скорость истечения с 600 до 800 метров в секунду, то есть на одну треть, надо повысить температуру газов перед турбиной с 850 примерно до 1700°.
Такое увеличение тяги на одну треть было бы решающим успехом в штурме «звукового барьера»!
Однако именно в этом направлении за прошедшие годы сделано сравнительно мало — ведь уже в первых турбореактивных двигателях температура газов перед турбиной достигала 800°, а сейчас она все еще не превышает обычно 900–950°. Очевидно, должны быть весьма серьезные причины такого медленного роста.
Может быть, более высокие температуры газов в двигателе вообще не могут быть получены из-за малой калорийности топлива?
Нет. При сгорании керосина в воздухе температура газообразных продуктов горения может достигать и даже превышать 2000°.
Тогда, может быть, причина заключается в невыгодности такого метода увеличения тяги — из-за ухудшения экономичности двигателя, то есть увеличения расхода топлива на килограмм тяги?
И опять нет! Ведь, если это невыгодно в длительном полете, то при кратковременном увеличении тяги, или так называемом форсировании двигателя (нужда в нем часто возникает в летной эксплуатации), расход топлива, естественно, не играет такой большой роли. Более того, при больших сверхзвуковых скоростях полета расход топлива не только не возрастает с ростом температуры газов, но даже уменьшается!
4* Как учит термодинамика — наука о преобразовании тепла в работу, — скорость истечения пропорциональна корню квадратному из абсолютной температуры газов.
Турбинное колесо-«ахиллесова пята» газотурбинного двигателя.
Истинное объяснение связано с одной из основ ных особенностей работы турбореактивного да и любого другого газотурбинного двигателя. Речь идет о важнейшей, еще не преодоленной пока его слабости, его «ахиллесовой пяте» — газовой турбине, точнее — о ее лопатках.
Турбинные лопатки работают в исключительно тяжелых условиях, и в этом отношении вряд ли их можно с чем-нибудь сравнить. Они прикреплены к турбинному диску, диаметр которого в новых мощных турбореактивных двигателях достигает метра. Это колесо делает много тысяч оборотов в минуту, и при работе двигателя на лопатки действует огромная центробежная сила, в десятки тысяч раз превосходящая вес лопатки. Только самые прочные металлы могут выдержать подобные нагрузки.
Но мало того. Из сопел турбины на лопатки вырывается стремительный поток газов, несущийся со скоростью многих сотен метров в секунду. Под действием этого потока лопатки начинают вибрировать. Они изгибаются, скручиваются, трепещут неизмеримо сильнее, чем кленовые листья на ураганном ветру. Под действием этих колебаний металл и без того сильно перегруженных лопаток «утомляется», не выдерживает — лопатка разрушается. Немало усилий приходится затрачивать, чтобы изменением конструкции двигателе избавить лопатки хотя бы от самых опасных и неприятных колебаний.
Но и это не все. Поток газов, вырывающийся из сопла на лопатки, нагрет до 850–900°. Естественно, что лопатки, представляющие собой, по существу, тонкие длинные полоски металла, быстро раскаляются докрасна, их температура лишь на 100–150° ниже температуры газов. Самые прочные металлы катастрофически теряют прочность при таком нагреве. Неудивительно, что сильно нагруженные, вибрирующие лопатки, даже изготовленные из металлов, обладающих изумительной, ни с чем не сравнимой прочностью, не выдерживают и обрываются. Чтобы сохранить огромную прочность при высоких рабочих температурах, лопатки газовой турбины изготовляют из особых сплавов, в которые входят многие ценные и редкие металлы — вольфрам, кобальт, никель, ванадий, ниобий и другие. Эти металлы придают сплаву не простую прочность, а прочность при высокой температуре, жаропрочность. Но даже и такие сверхжаропрочные лопатки, оказывается, недостаточно хороши для турбореактивных двигателей.
В условиях работы газовых турбин проявляется еще одна слабость металла, еще одна его болезнь — «ползучесть», или крип. Оказывается, под действием громадных центробежных сил раскаленная лопатка постепенно удлиняется, сначала медленно, а затем все быстрее. Эта пластическая деформация может перерасти в грозную опасность для турбины. Достаточно лопатке немного удлиниться, чтобы задеть за корпус, и она немедленно сломается. Ведь радиальный зазор между лопатками и корпусом очень мал: иначе произойдет значительная утечка газов, и турбина будет плохо работать. Иной раз лопатка ломается вследствие ползучести, даже и не задевая за корпус, а просто оттого, что чересчур ослабляется.
Значит, материал для изготовления лопаток должен быть не только сверхжаропрочным, но и крипоустойчивым. Материалов с подобными качествами природа не знала, людям пришлось их создавать. Только замечательные достижения металлургии позволили осуществить давнишнюю мечту инженеров — создать газовую турбину.
Вот почему и кажущееся таким небольшим повышение температуры газов перед турбиной с 800 до 900°, о котором шла речь выше, было в действительности огромной победой техники — ведь повышение температуры на один градус приводит к уменьшению жаропрочности материала примерно на один процент!
Понятно, почему дальнейшее повышение температуры газов перед турбиной оказывается крайне сложным дедом. И все же резервы для такого повышения есть огромные. Мы уже говорили, что при сгорании керосина в воздухе температура газов может достигать и даже превышать 2000°. Чтобы снизить эту температуру до 800–900°, к продуктам сгорания приходится добавлять более холодный воздух. Таким образом, только часть воздуха, выходящего из компрессора, не более 1/3-1/4 от общего количества, участвует в сгорании топлива в современных турбореактивных двигателях. Другая, большая часть служит лишь для охлаждения продуктов сгорания. Если бы лопатки турбины позволили, то в том же двигателе можно было сжигать в 3–4 раза больше топлива, что и привело бы с ростом температуры газов к увеличению тяги двигателя. Но, увы, это пока невозможно.
Стоит подать в камеру сгорания чуть-чуть больше топлива, как температура газов сейчас же увеличится и может превысить максимально допустимую, а это грозит выходом из строя турбинных лопаток и аварией двигателя.
Как же ученые, конструкторы и инженеры пытаются повысить температуру газов в турбореактивном двигателе?
Следует отметить, что эта проблема важна не только для турбореактивного двигателя — еще более важна она для так называемого турбовинтового двигателя, в котором турбина вращает воздушный винт. Оказывается, при повышении температуры газов не только увеличивается мощность турбовинтового двигателя, но и улучшается его. экономичность, то есть уменьшается расход топлива на одну лошадиную силу. А ведь турбовинтовые двигатели привлекают к себе все большее внимание как превосходные двигатели для скоростных пассажирских самолетов, — кто не знает ниши замечательные самолеты «ТУ-114», «ИЛ-18» или «АН-10»? Понятно поэтому то внимание, которое уделяется проблеме создания высокотемпературной авиационной газовой турбины.
Эта проблема решается двумя различными путями. Металлурги, химики, физики, материаловеды стараются создать новые, более жароупорные конструкционные материалы. Вероятнее всего, это будут уже не металлические сплавы — они одни не в состоянии решить задачу. Только различные комбинации прочных металлов со сверхжароупорной керамикой могут помочь конструктору, создающему высокотемпературную турбину»
Другой путь — охлаждаемая турбина. Если сделать лопатки полыми можно предусмотреть в них каналы для охладителя (воздуха или жидкости), то температуру газов можно значительно повысить, не повышая температуры лопатки. Понятно, что циркулирующий в каналах лопаток охладитель будет уносить с собой часть полезного тепла.
Турбовинтовые двигатели «ТУ-114».
Другая потеря будет связана с затратой работы на проталкивание охладителя через каналы. Однако возможность значительного повышения рабочей температуры газов более чем компенсирует эти потери.
Этим объясняется то, что в самое последнее время в эксплуатации появляются турбореактивные и другие авиационные газотурбинные двигатели с турбинами, имеющими лопатки с воздушным охлаждением. В частности, например, в новом английском турбореактивном двигателе «Спей» 5* (точнее — этот двигатель является не простым турбореактивным, а так называемым двухконтурным; о подобных двигателях речь будет идти ниже, в главе V) температуру газов перед турбиной удалось повысить таким образом до 1040°. В других зарубежных двигателях этого типа 6* температура газов достигает даже 1130°. Большой прогресс!
Одним из весьма перспективных методов охлаждения турбинных лопаток считают, в частности, так называемое проникающее охлаждение. В этом случае лопатки изготовляются методом порошковой металлургии, то есть спеканием мельчайших зерен металла. В стенке лопатки, которая делается полой, образуется множество микроскопических каналов. Через эти каналы изнутри подается под давлением какая-нибудь охлаждающая жидкость. Она выступает на поверхности лопатки, омываемой раскаленными газами, создавая защитный холодный слой. Лопатка в этом случае как бы «потеет», отчего эту систему охлаждения называют иногда «охлаждение выпотеванием». Температура лопатки при таком охлаждении оказывается меньшей, чем при других известных системах охлаждения.
Конечно, проблема создания высокотемпературной турбины будет со временем решена. Но ведь штурмовать «звуковой барьер» надо сейчас. Уже теперь для этого необходимо повышать тягу турбореактивных двигателей. Как же это сделать, если на пути увеличения температуры газов стоят турбинные лопатки?
Сама собой напрашивается мысль: если нельзя повысить температуру газов перед турбиной, то нельзя ли это сделать за ней? Ведь для увеличения скорости истечения газов и, следовательно, тяги нужно увеличить температуру газов, вытекающих из двигателя. А такого повышения температуры достигнуть просто — достаточно сжечь добавочное топливо уже за турбиной, в выхлопной трубе. Эта идея нашла широкое применение в реактивной авиации и помогла одержать победу в штурме «звукового барьера». Конструктивное воплощение она получила в виде так называемой форсажной камеры. В настоящее время форсажная камера является обязательным добавлением почти ко всякому мощному турбореактивному двигателю, установленному на скоростных военных самолетах.
Устройство камеры принципиально очень просто. Газы, выходящие из турбины, попадают в переднюю часть форсажной камеры, которая крепится к задней части двигателя. Эта часть камеры представляет собой расходящуюся коническую трубу. Скорость газов, движущихся в ней, уменьшается, а давление соответственно возрастает. Такое устройство называется диффузором.
Затем газы поступают в следующую часть форсажной камеры, которая носит название камеры сгорания. Здесь установлены топливные форсунки. Через них впрыскивается горючая жидкость — керосин или бензин. Жидкость сразу же воспламеняется и сгорает — ведь газы, вытекающие из двигателя, нагреты до 700–750°. Необходимый же для сгорания кислород всегда в избытке имеется в выхлопных газах (вспомните, сколько воздуха приходится добавлять к продуктам сгорания топлива в основной камере сгорания двигателя, чтобы снизить их температуру).
В результате сгорания добавочного топлива температура газов сильно повышается, и они устремляются в последнюю часть форсажной камеры — реактивное сопло. Здесь газы расширяются, скорость их увеличивается, и они покидают форсажную камеру, создавая реактивную тягу.
Форсажная камера имеет относительно небольшой вес, если учесть увеличение тяги, которое она дает. Это увеличение даже при работе двигателя на стоянке составляет примерно одну треть от тяги двигателя без форсажной камеры, а в полете с высокой скоростью оно еще более возрастает, так что исходная тяга двигателя почти удваивается.
Значит ли это, что применение форсажной камеры снимает задачу создания высокотемпературной турбины?
Конечно, нет. Увеличение тяги с помощью форсажной камеры очень невыгодно, так как приводит к большому перерасходу топлива. Ведь даже повышение температуры газов перед турбиной, как об этом уже говорилось, при современных скоростях связано с увеличением удельного расхода топлива, а следовательно, и уменьшением дальности полета. Что же говорить об увеличении температуры газов за турбиной, когда топливо сгорает при значительно меньшем давлении, чем в камере сгорания двигателя! 7*.
Естественно, что перерасход топлива при работе форсажной камеры получается гораздо большим, и сколько-нибудь продолжительная работа ее поэтому недопустима. Форсажная камера служит лишь для кратковременного значительного увеличения тяги двигателя, или его так называемого форсажа. Конечно, и для форсажа сжигание добавочного топлива в камере сгорания двигателя, то есть перед турбиной, было бы гораздо выгоднее, чем за ней, в форсажной камере. Однако при условии очень кратковременной работы перерасход топлива не столь значителен. Поэтому форсажная камера и получила применение на военных самолетах, как истребителях, так и бомбардировщиках. Она используется в случаях, когда требуется кратковременное значительное увеличение скорости полета: в воздушном бою, на подходе к цели бомбометания и т. д. Форсажная камера и позволила реактивным самолетам перешагнуть через «звуковой барьер». Не будь ее, эта победа была бы отодвинута на значительное время.
Вот летит бомбардировщик с двумя турбореактивными двигателями необычной длины — это двигатели с форсажной камерой. Камеры поневоле должны быть длинными, иначе не удастся сжигать в них топливо, впрыскиваемое в газовый поток.
Бомбардировщик летит очень быстро, как бы вонзаясь своим стреловидным крылом в небо. Но вдруг из обоих двигателей блеснули длинные языки пламени, и самолет резко увеличил скорость, будто брошенный чьей-то могучей рукой. Это летчик включил форсажные камеры. С оглушительным грохотом, значительно более сильным, чем обычный гул работающего турбореактивного двигателя, самолет исчез за горизонтом. Легко понять, сколь спасительной может оказаться такая скорость, если самолет попадет под ураганный зенитный огонь…
5* По журналу «Эркрафт инжиниринг», № 395, 1962 г.
6* По журналу «Флайт», 1 августа 1963 г.
7* Чем меньше давление, при котором происходит подвод тепла к газу (в данном случае — сгорание), тем менее выгоден этот подвод, так как тем меньшая доля тепла переходит в работу при последующем расширении газа.
Работает турбореактивный двигатель с форсажной камерой.
Форсажная камера получила широкое распространение уже сейчас, а в ближайшее время она станет обязательной частью любого скоростного реактивного самолета. Это объясняется не только тем, что с помощью форсажной камеры проще достигнуть сверхзвуковых скоростей полета, но и тем, что при увеличении скорости полета форсажная камера становится, как об этом уже говорилось, все более выгодной (точнее говоря — все менее невыгодной). С большой степенью вероятности можно считать, что в области скоростей полета от звуковой до вдвое и даже, может быть, втрое (а по некоторым высказываниям — даже вчетверо) превосходящей звуковую, основным двигателем военной авиации будет турбореактивный с форсажной камерой. А при еще больших скоростях?