12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА

12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА

В этой главе мы не будем обращаться к истории, поскольку космическая эра продолжается всего три десятилетия, а расскажем о том, как радиоэлектроника, которой стало тесно на огромной Земле, завоевывает просторы Солнечной системы. О том, как «электронные глаза» смотрят на другие планеты, как «электронные руки» трогают их поверхность, как «электронный мозг» обрабатывает полученные сведения и «электронная почта» передает их нам, построившим и пославшим чудесных космических разведчиков к другим мирам. Расскажем также о создании космических радиомостов, космическом телевидении и о поиске полезных ископаемых на Земле с помощью космических аппаратов.

Оборудование космических аппаратов

Какое оно? Если попытаться охарактеризовать его одним словом, то это слово наверняка будет: «электронное». Вообще, выход в космос человечеству обеспечили два направления науки и техники: ракетостроение и радиоэлектроника. Отними первое, и окажется, что нечем вывести космический корабль на орбиту, отними второе, и окажется, что незачем! Любой космический аппарат будет мертв без электроники. Вспомним, что было на первом советском искусственном спутнике Земли (ИСЗ), открывшем космическую эру 4 октября 1957 года. Всего лишь два радиопередатчика на частотах 20 и 40 МГц. Они излучали непрерывно периодические сигналы: «бип…бип…бип». Весь мир слушал, затаив дыхание, эти сигналы. Ну а какова была практическая польза? Оказывается, огромная. Впервые коротковолновый излучатель был поднят на высоту слоя F ионосферы. Представилась уникальная возможность экспериментально изучить процессы распространения и преломления радиоволн в ионосфере. На первом спутнике не было систем ориентации, терморегулирования, телеметрии (кстати, все эти системы тоже электронные), тем не менее он жил, посылал радиосигналы и приносил полезную научную информацию.

Неотъемлемую часть радиоэлектронной аппаратуры каждого космического летательного аппарата (КЛА), будь то ИСЗ или исследовательский межпланетный корабль, составляют средства связи, управления, навигации и ориентации. К средствам связи прежде всего относятся телеметрическая и командная радиолинии. Они действуют обычно в дециметровом диапазоне радиоволн, беспрепятственно проходящих сквозь ионосферу Земли. По командной радиолинии с наземных станций управляют работой аппарата. Команды передаются, как правило, цифровым двоичным кодом с использованием фазовой манипуляции. Такой вид связи наиболее помехоустойчив. На КЛА имеется приемник, постоянно настроенный на волну командного передатчика, установленного на Земле. Выходные сигналы приемника передаются в блок управления КЛЛ.

Телеметрическая информация поступает с КЛЛ в наземные пункты слежения и позволяет узнавать состояние аппарата: напряжение бортовой сети, температуру внутри корпуса, а также отдельных деталей и механизмов, выявлять неполадки в работе различных систем и т. д. Датчиков в системе телеметрии много, а передатчик один, поэтому телеметрическая информация преобразуется в цифровую и «уплотняется», т. е. объединяется для передачи по одному каналу. Например, первый байт (слово) цифровой передачи несет информацию об одном параметре, второй — о другом, и т. д.

Но нет смысла заставлять работать телеметрический передатчик КЛА постоянно. Это привело бы к большому расходу электроэнергии. Чаще всего телеметрическую информацию записывают на цифровой бортовой магнитофон (запоминающее устройство) и «сбрасывают» на Землю лишь по команде из Центра управления полетом. Этот же магнитофон может накапливать и другую информацию от различных датчиков-магнитометров, счетчиков частиц и микрометеоритов, спектрометров и др. Особо возрастает роль радиоэлектронных устройств при выполнении точных и ответственных операций в космосе, например, таких, как стыковка космических кораблей на орбите. Взаимное расположение кораблей определяют с помощью специальных бортовых радиолокаторов. ЭВМ обрабатывает полученные данные и выдаст управляющие сигналы для систем коррекции орбиты.

Если космический корабль обитаемый, то на нем обязательно есть линия телефонной связи с Землей, а на больших обитаемых орбитальных станциях — еще и система космического телевидения. Эти системы оснащаются, как правило, несколькими передатчиками и приемниками, работающими в различных диапазонах волн. Для связи в любое время с ИСЗ, находящимся на низкой орбите, необходима коротковолновая линия связи. А для высококачественной связи без помех или для передачи телевидения лучше всего подходят сантиметровые и дециметровые волны, но работать эта линия будет только в пределах «радиовидимости» ИСЗ с наземного пункта связи. По этой причине пункты космической связи в нашей стране располагают но всей ее огромной территории. Их даже не хватает, и часто используют корабли с соответствующей аппаратурой, выходящие в Тихий, Атлантический и Индийский океаны.

Принцип работы дифференциального датчика Солнца:

1 — светочувствительные пластины; 2 — область тени; 3 — экран; 4 — поток солнечных лучей; 5 — Солнце

Особые линии связи нужны спутникам, передающим на Землю научную, метеорологическую или народнохозяйственную информацию. Она накапливается бортовым магнитофоном и передается в центр обработки по команде с Земли. Сколь выгодна передача этой информации по радиоканалу, можно понять на простом примере.

Если на ИСЗ установить аэрофотокамеру с запасом пленки и снимать поверхность Земли, а затем контейнер с пленкой «отстреливать» и спускать на Землю на парашюте, то каждый снимок обойдется очень дорого. Если же передавать такую же информацию по радиоканалу (как в телевидении, с разверткой изображения), то каждый снимок будет значительно дешевле. И чем дольше проработает спутник, тем дешевле станет и передаваемая им информация. Не по «собственной» стоимости, конечно, а по затратам на ее добывание и пересылку.

Ориентация КЛА в пространстве осуществляется по сигналам датчиков направления. Они могут ориентироваться либо на горизонт Земли или планеты, вокруг которой обращается КЛА (датчики горизонта), либо на Солнце, либо на заранее выбранную звезду (датчики астроориентации). Работа датчиков горизонта основана на приеме ИК излучения планеты. Кажущаяся температура космического пространства составляет всего около 4 К (четыре градуса по шкале Кельвина), а температура диска Земли около 260 К. В фокусе ИК оптической системы, направленной на горизонт, установлен ИК приемник, например терморезистор. Его сопротивление изменяется при попадании в поле зрения края диска планеты, и соответствующий сигнал подается на механизмы поворота КЛА.

Датчик астроориентации также представляет собой типичное оптоэлектронное устройство. Изображение светила проецируется телескопической системой линз на мозаику из нескольких фотоприемников. В зависимости от положения изображения на мозаике вырабатывается сигнал на коррекцию положения КЛА. В других системах используют один фотоприемник, механически сканирующий определенную часть небосвода. Вырабатываемый сигнал ошибки заставляет систему ориентации изменять положение КЛА так, чтобы изображение светила попадало в центр поля сканирования. Все задачи управления полетом решаются системой управления КЛА. Здесь и ориентация, и стабилизация осей КЛА в пространстве, и наведение, и маневрирование при встрече с другим космическим кораблем или объектом, и включение систем и механизмов по заданной программе, и многое-многое другое. Управляющее устройство должно сравнивать сигналы датчиков, характеризующие те или иные параметры полета, с эталонными, опорными сигналами и выдавать команды на необходимую коррекцию. С этой задачей лучше всего может справиться бортовая ЭВМ, выполненная на основе микропроцессора. Теперь она есть на каждом КЛА.

Оборудование системы ориентации метеорологического спутника:

1 — солнечная бленда ИК датчика; 2 — панель с солнечными элементами; 3 — ИК датчик горизонта; 4 — датчик Солнца; 5 — контактные кольца вала солнечных панелей; 6 — инерциальный диск; 7 — солнечный датчик системы ориентации панелей; 8 — вал солнечных панелей

Автоматические межпланетные станции

Наиболее сложным и многообразным радиоэлектронным оборудованием оснащены автоматические межпланетные станции (АМС), совершающие далекие «прогулки» в пределах нашей Солнечной системы. Автоматические межпланетные станции, как правило, уже не возвращаются на Землю, поэтому вся обширнейшая информация, которую они собирают в продолжение многомесячного полета, передается только по радио.

Научная аппаратура АМС рассчитана на исследование определенной планеты или нескольких планет, а также межпланетного пространства, проходимого АМС на пути к цели. Детальное исследование планеты осуществляют АМС с мягкой посадкой, продолжающие функционировать некоторое время еще и на поверхности планеты. В связи с большими трудностями осуществления мягкой посадки на далекую планету по командам с Земли большинство операций по сближению и посадке осуществляется в автоматическом режиме на основании сигналов многих датчиков и результатов работы большого количества сложной бортовой радиотехнической аппаратуры навигации и наведения.

Вот, например, автоматическая лунная станция (АЛС), в задачи которой входило определение физических условий на поверхности Луны, измерение параметров и свойств лунного грунта, его химического состава на различной глубине, обзор и передача на Землю изображения лунной поверхности в районе посадки. Работой АЛС управляют две системы: командная, принимающая «указания» с Земли, и программная, руководствующаяся заранее заложенной в памяти программой. Такое «дублирование руководства» позволяет избежать ошибок, связанных с потерей связи и с изменением внешних условий в случае несоответствия запрограммированным ситуациям.

В состав АЛС входит до четырех телевизионных установок. Три из них передают на Землю изображения лунной поверхности вокруг АЛС, охватывая все 360° по азимуту и 65° по углу места. В то же время две установки могут быть повернуты в одну сторону для обзора одного и того же сектора. Это позволяет получать стереоскопическое изображение участка местности, по которому с помощью специальной обработки снимков на Земле приборами — стереокомпараторами можно узнавать размеры наблюдаемых предметов и их удаленность от АЛС. Четвертая телевизионная установка контролирует работу манипулятора станции — механической «руки», отбирающей пробы грунта и предметы на лунной поверхности.

На рисунке показано устройство одной из телевизионных камер. Собственно камера «смотрит» вертикально вверх, а выбор сцены производится поворотным зеркалом. Развертка изображения осуществляется на 200 (малая четкость) или 600 (высокая четкость) строк. Сигналы изображения с малой четкостью передаются на Землю всенаправленной антенной в относительно узкой полосе частот. Такой режим работы нужен при проверке функционирования аппаратуры сразу после посадки, а также в случае выхода из строя остронаправленной антенны или системы ее ориентации в сторону Земли. Сигналы изображения с высокой четкостью передаются остронаправленной антенной в широкой полосе частот. Когда объектив камеры сфокусирован на предметы, находящиеся на расстоянии 4 м, разрешающая способность системы в зависимости от изменяемого фокусного расстояния объектива может составить от 4 до 0,2 мм!

Обзорное телевизионное устройство АЛС:

1 — видикон; 2 — затвор; 3 — потенциометр диафрагмы; 4 — потенциометр фокусного расстояния; 5 — объектив с переменным фокусным расстоянием; 6 — мотор установки зеркала по азимуту; 7 — козырек; 8 — зеркало; 9 — мотор установки зеркала по углу места; 10 — турель со сменными фильтрами; 11 — радиоэлектронные устройства; 12 — кабели

2 января 1959 года была запущена первая советская АЛС «Луна-1», которая впервые в истории достигла второй космической скорости и навсегда покинула поле земного тяготения. В окололунном пространстве она выполнила обширную программу научных исследований и по радио сообщила результаты на Землю. Менее чем через год, в сентябре 1959 года, АЛС «Луна-2» впервые в мире достигла поверхности Луны, доставив туда вымпел с Гербом Советского Союза. Вслед за этим, в октябре того же года, АЛС «Луна-3» облетела Луну, сфотографировала обратную, невидимую с Земли сторону Луны и изображение передала по радио на Землю. Так человечество впервые получило возможность увидеть обратную сторону Луны.

18 июня 1965 года был осуществлен запуск многоступенчатой ракеты с автоматической станцией «Зонд-3». Она сфотографировала ту часть невидимой с Земли стороны Луны, которая осталась неохваченной при съемке 1959 года. Полученные снимки передавались на Землю не сразу, а спустя почти девять суток после съемки, когда расстояние до станции составляло около 2,2 млн. км. При этом отрабатывалась система передачи изображений на большие расстояния. Передача осуществлялась с малой скоростью, причем каждый кадр для большей достоверности передавался многократно. Передача одного кадра занимала 34 мин при числе строк разложения 1100. Каждая строка содержала 860 элементов изображения; таким образом, общее число элементов в кадре составляло около миллиона. Малая скорость передачи позволила резко сузить полосу частот радиоканала и тем самым увеличить отношение сигнал-шум на выходе наземного приемного устройства, что и обеспечило высокое качество изображения.

Первую мягкую посадку на поверхность Луны осуществила АЛС «Луна-9», запущенная 31 января 1966 года. Радиоэлектронные системы станции обеспечили прием команд и передачу телеметрической информации, измерение параметров движения ракеты-носителя, разгонного блока и самой станции на всех этапах полета, включающих вывод на орбиту ИСЗ, разгон в сторону Луны и торможение перед посадкой в заранее намеченной равнинной части Океана Бурь. На расстоянии 75 км от поверхности Луны по команде бортового радиовысотомера была включена тормозная двигательная ракетная установка. Автоматическая лунная станция с ювелирной точностью опустилась па поверхность, и через 250 с после посадки раскрылись антенны для передачи на Землю научной информации. Радиопередачи велись на частоте 183,538 МГц. Через некоторое время заработали телевизионные камеры и началась передача изображений поверхности в районе посадки.

Образцы лунного грунта доставила на Землю АЛС «Луна-16», а следующая АЛС, «Луна-17», отправила в путешествие по поверхности Луны первый в истории самодвижущийся исследовательский аппарат «Луноход-1». Произошло это 17 ноября 1970 года. Аппарат представлял собой восьмиколесную тележку с установленным на ней контейнером, содержащим научную аппаратуру, телекамеры, антенны, двигатели, энергетическую установку и прочее оборудование.

«Луноход-1» управлялся радиокомандами с Земли. Он передавал на наземный пункт управления телевизионные изображения поверхности, по которой двигался. Операторы, сидя в удобных креслах за пультом управления, порой забывали, что управляемый ими объект находится на громадном расстоянии в 380 тыс. км настолько чутко он реагировал на команды. К радиоэлектронной аппаратуре «Лунохода» предъявлялись особые требования: возможно меньшие масса и габаритные размеры, малое энергопотребление, стабильность параметров в широком диапазоне температур, при воздействии вибрации и ускорений, а также высокая надежность. Надежность и ресурс аппаратуры оказались настолько высокими, что «Луноход» проработал значительно дольше предполагаемого срока.

Автоматические межпланетные станции посылаются не только к Луне, но и к другим планетам Солнечной системы. Первый межпланетный полет АМС «Венера-1» происходил в то же самое время, когда в космос поднялся первый космонавт планеты Ю. А. Гагарин. Дата его полета, 12 апреля 1961 года, теперь отмечается как День космонавтики. Осенью следующего года отправилась в полет АМС «Марс-1». Эти АМС на входили в атмосферу планет. Облетая планету по вытянутой траектории, они передавали на Землю телевизионные изображения и показания приборов (магнитометров, детекторов, микрометеоритов, счетчиков частиц и т. д.). Так было положено начало комплексному исследованию планет Солнечной системы аппаратами, посланными людьми.

Трудности организации радиомоста АМС-Центр управления полетом огромны. Только задержка радиосигнала на пути к Марсу достигает 10 мин. Попробуйте, зная скорость распространения радиоволн (3·108 м/с), оценить длину радиотрассы!

Но расстояния в сотни миллионов километров — не препятствие для современной техники радиосвязи… да и не только радиосвязи. Прежде чем послать, например, к Венере АМС, необходимо очень точно определить параметры орбиты планеты и расстояние до нее. Эти вопросы были решены при радиолокации Венеры наземным радиолокатором, созданным Институтом радиотехники и электроники АН СССР совместно с рядом других организаций. Работы проводились под руководством вице-президента АН СССР В. А. Котельникова (его именем названа уже известная читателю теорема). Планетный радиолокатор был размещен в Крыму, на базе Центра дальней космической связи, где имелась эффективная антенная система. Она была выполнена из восьми связанных в общую конструкцию параболических зеркал. Но даже при такой большой площади антенны отраженный от Венеры сигнал оказывается чрезвычайно слабым: его уровень значительно ниже уровня собственных шумов приемника. Для выделения сигнала использовалась достаточно сложная обработка смеси сигнала и шума на ЭВМ.

В последующие годы для целей дальней космической связи, радиолокации планет и радиоастрономических исследований были построены еще более мощные антенные сооружения. Впечатляет, например, полноповоротная параболическая антенна диаметром 75 м, установленная в Подмосковье. Планетный радиолокатор позволил измерить расстояние до Венеры (около ста миллионов километров) с точностью в несколько сотен метров! Это позволило в 10000 раз уменьшить ошибку в определении астрономической единицы — среднего расстояния от Земли до Солнца. Без такого уточнения был бы невозможным вывод АМС на околовенерианскую орбиту и доставка спускаемых аппаратов в заданный район поверхности планеты.

Первую мягкую посадку на поверхность другой планеты осуществила АМС «Венера-7» в 1970 году. Вслед за ней на поверхность Венеры опустились станции «Венера-9» и «Венера-10». Переданные ими сведения поразили многих. Ранее ученые полагали, что условия на поверхности планеты должны быть близки к земным, но все оказалось не так. Громадное давление атмосферы и высокая температура поверхности сделали Венеру планетой малоподходящей для обитания живых организмов. Каменистая пустыня и затянутое ядовитыми облаками раскаленное венерианское небо — поистине такие условия могут выдержать только автоматы.

Исследования Венеры продолжаются. С помощью АМС «Венера-15» и «Венера-16» в 1984 году проводилась радиолокационная съемка поверхности планеты. Автоматические межпланетные станции длительное время летали вокруг Венеры как ее спутники и при прохождении наиболее приближенных к поверхности участков траектории (высота около 1000 км) снимали радиолокационное изображение полосы местности длиной до 8000 и шириной 150 км. Один сеанс съемки продолжался 15 мин. На АМС использовались специальные радиолокаторы, созданные в Московском энергетическом институте под руководством академика АН СССР А. Ф. Богомолова. Изображения отдельных отснятых участков поверхности объединялись в общую радиолокационную карту поверхности Венеры. Полученные результаты интересны для нас не только с теоретической, но и с практической точки зрения. Знание эволюции Венеры помогает понять и историю развития Земли, облегчает поиск на Земле полезных ископаемых.

В прозрачной и очень разреженной холодной атмосфере Марса живым организмам, так же как и на Венере, существовать было бы очень трудно. Их там и не обнаружили, даже бактерий. Получается, что жизнь в Солнечной системе — явление уникальное, возникшее только на Земле, и тем с большей бережностью надо к ней относиться. Первая мягкая посадка на Марс осуществлена во время группового полета АМС «Марс-2» и «Марс-3» в 1971 году. Станции передали на Землю изображения планеты и некоторые сведения о ее поверхности.

Космические эксперименты продолжаются. Осуществлены полеты к дальним планетам Солнечной системы — Юпитеру и Сатурну. Автоматические межпланетные станции передали по радиоканалу изображения этих планет, полученные с близкого расстояния. А когда знаменитая комета Галлея приближалась к перигелию и под действием солнечного излучения распустила огромный газовый «хвост», навстречу ей отправились АМС, обогатившие науку новыми сведениями о структуре и происхождении комет. Предполагают, что кометы являются одними из самых старых обитателей Солнечной системы, они сформировались из первоначального газопылевого облака одновременно с планетами, и поэтому изучение комет проливает свет на тайны происхождения Солнечной системы. Без радиоэлектроники подобные исследования космоса были бы просто невозможны.

Электроника и космонавтика

Планомерное и широкое освоение космоса невозможно лишь одними автоматами — полеты людей в космос стали обыденным явлением. В Советском Союзе разработана длительно действующая орбитальная космическая станция «Салют», на которой может находиться постоянный или сменяемый экипаж из нескольких человек. В комплекс орбитальной станции входит собственно орбитальный блок, выводимый в околоземное пространство мощной ракетой-носителем, и транспортный корабль «Союз», на котором отправляются космонавты. Корабль стыкуется на орбите с орбитальным блоком. Кроме того, к станции могут пристыковываться транспортные грузовые корабли типа «Прогресс».

Вся станция представляет собой весьма внушительное сооружение: общая масса орбитального блока и корабля «Союз» составляет около 26 т, длина достигает 23 м, а поперечный размер по раскрытым солнечным батареям 11 м. Внутри станции оборудованы рабочие и спальные места для космонавтов, системы обеспечения их жизнедеятельности. Для проведения научных экспериментов, фотографирования и визуального наблюдения в отсеках станции предусмотрено 27 иллюминаторов.

Полеты космических кораблей и орбитальных станций были бы невозможны без обширного комплекса радиотехнических средств навигации и связи. Во время полета необходимо производить точные траекторные измерения для определения местонахождения корабля. Параметры орбиты измеряются с помощью двух бортовых приемопередатчиков-ответчиков, работающих в различных диапазонах волн. Они ретранслируют радиосигналы, передаваемые с наземных пунктов сложения и связи, и благодаря этому позволяют определять наклонную дальность, радиальную скорость и угловое положение станции относительно наземных пунктов, где и производятся измерения. Полученные данные передаются в координационно-вычислительный центр, обрабатывающий поступающую информацию и определяющий параметр орбиты. Наклонная дальность вычисляется по задержке ретранслированною радиосигнала. Радиальная скорость измеряется по доплеровским изменениям несущих частот передатчиков станции и наземных пунктов. Для определения углового положения станции служат специальные угломерные устройства, входящие в антенные и приемные системы наземных пунктов слежения.

Внимание, стыковка!

Очень важна роль командных радиолиний между станцией и наземными пунктами. Наземный комплекс посылает на борт команды в виде двоичных чисел (так называемые уставки). Бортовая аппаратура принимает и дешифрирует команды. Информация о работе бортовых систем передается на Землю двумя радиотелеметрическими линиями. Когда станция находится вне зоны радиовидимости наземных пунктов, телеметрическая информация, интересующая Землю, собирается и хранится бортовым запоминающим устройством. В дальнейшем эта информация «сбрасывается» при пролете станции над пунктом слежения.

Во время сеансов связи с космонавтами по КВ каналам передается также и оперативная телеметрическая информация об их состоянии. Вообще же система связи с космонавтами обеспечивает непрерывную двустороннюю телефонную связь на всем протяжении полета. В зоне радиовидимости наземных пунктов используется УКВ диапазон, позволяющий добиться устойчивой связи при прямой видимости между антеннами станции и наземного пункта, а на остальных участках траектории используется КВ диапазон. Связь при этом возможна благодаря преломлению радиоволн в ионосфере Земли.

Орбитальная станция «Салют» оснащена телевизионной системой, имеющей четыре передающие камеры. Две из них установлены внутри станции и позволяют операторам Центра управления полетом наблюдать за работой космонавтов. Две другие камеры расположены снаружи станции. Они нужны для контроля ориентации станции при орбитальном полете. На участке выведения на орбиту одна из внешних телекамер контролировала процесс отделения станции от последней ступени ракеты-носителя. Внешние камеры позволяют наблюдать за работой космонавтов при выходе в открытый космос и за стыковкой кораблей на орбите. Все телекамеры оборудованы передающими трубками типа «видикон» и развертывают изображение в соответствии с отечественным стандартом на 625 строк при 25 кадрах в секунду. Телевизионная информация поступает на видеоконтрольное устройство, расположенное на пульте управления станции, и на передатчики линии связи с наземными пунктами.

Многочисленная радиоэлектронная аппаратура станции потребляет немалую мощность. Ее поставляют панели солнечных элементов, подобно крыльям развернутые по бокам станции. Их общая площадь составляет несколько квадратных метров. Ток, вырабатываемый солнечными элементами, заряжает буферную никель-кадмиевую аккумуляторную батарею, обеспечивающую питание аппаратуры станции при пиковых нагрузках, а также при полете станции над теневой, ночной стороной Земли. Продолжительность нахождения станции в тени Земли достигает 40 % общего полетного времени.

По-иному решили проблему питания радиоэлектронной аппаратуры космических кораблей американские конструкторы. При осуществлении программы «Аполлон», завершившейся 16–24 июля 1969 года первой лунной экспедицией трех космонавтов, были разработаны специальные электрохимические источники тока топливные батареи. Вещество элементов этих батарей в процессе выработки электроэнергии не расходуется. Оно служит лишь катализатором реакции соединения водорода с кислородом. Эти газовые реагенты — топливо батарей — заправляются в баки при запуске корабля и расходуются в топливных элементах по мере надобности.

Побочным продуктом электрохимической реакции оказывается обычная вода, использовавшаяся для питья и других хозяйственных нужд космонавтов. Ежедневно каждому космонавту требуется около ведра воды, и для многодневного полета запас ее получается значительным. Топливные элементы избавляют от необходимости «везти» воду с Земли. К сожалению, вода, полученная из экологически чистых топливных элементов, оказалась не совсем «чистой». Она напоминала газированную, поскольку была насыщена водородом, что, по сообщениям космонавтов, было не очень приятно (обычная газированная вода насыщается углекислым газом). В дальнейшем научились с помощью специальных фильтров очищать воду, полученную из топливных элементов.

Кроме топливных элементов на кораблях «Аполлон-11» и «Аполлон-12», осуществлявших полет к Луне, имелись резервные батареи обычных аккумуляторов. Они, кстати говоря, позволили благополучно вернуться на Землю экипажу аварийного корабля «Аполлон-13», на котором взорвался кислородный бак системы электроснабжения. Общее энергопотребление космических кораблей и орбитальных станций достигает нескольких киловатт, и эту весьма значительную мощность обеспечивают описанные энергетические установки.

Мирное освоение космоса человечеством продолжается, и одной из наиболее ярких страниц международного сотрудничества явилась стыковка на орбите в июле 1975 года советского и американского космических кораблей «Союз» и «Аполлон». Совершая совместный полет, космонавты в буквальном смысле ходили друг к другу в гости! Но космическая электроника служит не только космонавтам — она немало помогает и в разрешении наших земных насущных проблем.

Спутники связи

Когда вы смотрите телевизионные передачи о достижениях космической техники или работе и жизни отважных космонавтов на пилотируемой орбитальной станции, то, вероятно, не задумываетесь, каким путем приходит телевизионный сигнал к вашему приемнику. Этот путь часто включает и космический участок через спутник-ретранслятор. В удаленные районы Сибири и Дальнего Востока программы телевидения передаются только по космическому телевизионному мосту. Каковы же причины, приведшие к созданию космических телевизионных трасс? Одна из причин нам уже известна из главы о распространении радиоволн. Телевизионный сигнал занимает широкий спектр частот, и передавать его можно лишь в диапазоне УКВ. А ультракороткие волны распространяются по прямой, в пределах видимости между башней телецентра и приемной антенной вашего телевизора.

Примерно до 1967 года важная государственная задача охвата телевизионным вещанием всего населения страны решалась путем строительства мощных радиопередающих телевизионных центров (5…50 кВт) и ретрансляторов малой мощности (1…100 Вт). Пока эти станции строились в густонаселенных районах страны, ввод каждой из них означал значительный прирост числа телезрителей. На 1 января 1961 года в стране было построено 100 мощных телевизионных передатчиков и около 170 маломощных ретрансляторов, обеспечивавших телевизионным вещанием примерно 35 % населения. В последующие пять лет число мощных станций и ретрансляторов возросло соответственно до 170 и 480, а прирост числа телезрителей составил лишь 20 %. Стало ясно, что дальнейшее увеличение числа передающих телевизионных станций экономически нецелесообразно. Расчеты показали, что для охвата телевизионным вещанием 95 % населения страны потребовалось бы более 1000 мощных телецентров, многие тысячи километров кабельных и радиорелейных линий для обмена программами, что связано с огромными капитальными затратами.

Единственным реальным средством решения задачи стопроцентного охвата населения страны телевизионным вещанием в сжатые сроки оказалось использование спутниковых систем. 23 апреля 1965 года в Советском Союзе был произведен запуск спутника связи «Молния-1» на высокую эллиптическую орбиту с апогеем в северном полушарии и перигеем в южном. Начальный период обращения спутника был близок к половине суток и составил 11 ч 48 мин. Такой период обращения выбран не случайно: спутник должен появляться над обслуживаемой территорией всегда в одно и то же время, скажем в часы вечерних телепередач. На борту спутника была установлена ретрансляционная аппаратура для передачи программ телевидения и дальней двусторонней многоканальной телефонной, фототелеграфной и телеграфной радиосвязи. Первый прямой телевизионный обмен телевизионными программами между Москвой и Владивостоком состоялся!

Орбита ИСЗ «Молния-1».

На выборе орбиты спутника следует остановиться особо. Орбита представляет собой сильно вытянутый эллипс» в одном из фокусов которого находится центр Земли. Плоскость орбиты наклонена к плоскости экватора под углом около 65°, причем апогей орбиты — наиболее удаленная от Земли точка — находится в северном полушарии. Высота апогея составляет около 40000 км, а высота перигея — всего около 500 км. В соответствии с законами Кеплера, которым подчиняются все движущиеся небесные тела, спутник пролетает приближенную к Земле часть орбиты, включающую точку перигея, очень быстро. Ретранслятор спутника на этом отрезке орбиты, расположенном в южном полушарии, выключается. Зато удаленную от Земли часть орбиты, включающую точку апогея, спутник проходит медленно, он как бы «зависает» на несколько часов над Сибирью и Дальним Востоком. В это время и ведется ретрансляция телевизионных программ. Поскольку период обращения спутника равен 12 ч, в течение суток он совершает два витка вокруг Земли. На первом витке в течение девяти часов обеспечивается связь между любыми пунктами как на территории СССР, так и других стран Европы и Азии. Во время второго витка в течение трех часов возможна связь между европейской частью СССР и Центральной и Северной Америкой.

Корпус спутника связи «Молния-1» выполнен в виде цилиндра, на котором расположены шесть панелей с солнечными батареями и две направленные параболические антенны. Эти внешние устройства раскрываются после вывода спутника на орбиту. В торцах цилиндра расположены датчики ориентации и двигательная установка для коррекции орбиты. На внешней поверхности корпуса расположены также радиаторы системы терморегулирования. Работой спутника управляет программно-вычислительное устройство на основе сигналов командно-измерительной аппаратуры.

Устройство спутника «Молния-1»:

1 — датчики ориентации; 2 — солнечные батареи; 3,4 — направленные антенны; 5 — корректирующая двигательная установка; 6 — радиатор-охладитель; 7 — датчик ориентации антенн на Землю

Основную полезную нагрузку спутника составляет ретранслятор. Принятые с Земли сигналы через приемную антенну поступают на входное устройство и далее — на преобразователь частоты. Основное усиление сигналов происходит на сравнительно низкой промежуточной частоте. Затем сигнал еще раз преобразуется по частоте и усиливается оконечным усилителем мощности, выполненным на лампе бегущей волны. Усиленный сигнал излучается передающей антенной в сторону Земли. Выходная мощность ретранслятора достигает 40 Вт. Столь большая мощность бортового передатчика позволила упростить оборудование наземных станций и повысить помехоустойчивость связи. Для повышения надежности на спутнике связи «Молния-1» установлено три ретранслятора один рабочий и два резервных.

Структурная схема ретранслятора связного спутника:

1 — приемник: 2 — первый гетеродин: 3 — первый преобразователь частоты; 4 — усилитель промежуточной частоты; 5 — второй гетеродин; 6 — второй преобразователь частоты; 7 — усилитель мощности на лампе бегущей волны

При разработке описанного ретранслятора, работающего в диапазоне частот около 1 ГГц, пришлось решить немало технических проблем. На столь высоких частотах дециметрового диапазона обычные лампы и транзисторы уже не могли обеспечить большой выходной мощности. А пригодные для этой цели лампы бегущей волны имели большие габаритные размеры и массу. Было предложено оригинальное решение отказаться от баллона лампы! Ведь космический вакуум более глубок, чем вакуум, создаваемый в земных условиях в баллонах радиоламп. В результате масса и габаритные размеры усилителя мощности значительно снизились.

В 1967 году, к 50-летию Великого Октября, вступила в регулярную эксплуатацию спутниковая телевизионная сеть, работающая со спутниками типа «Молния» и насчитывающая 20 наземных станций «Орбита». К 1983 голу число их приблизилось к сотне. Приемная станция «Орбита» представляет собой комплекс сооружений, состоящий из большой поворотной параболической антенны диаметром 12 м, установленной на круглом железобетонном здании, и приемного устройства, размещенного внутри здания. Зеркало антенны изготовлено из специального алюминиевого сплава, масса зеркала составляет 5,5 т, а вместе с опорно-поворотным устройством — около 50 т. Для уменьшения уровня внутренних шумов, а следовательно, и повышения чувствительности приемного устройства на его входе установлен малошумящий параметрический усилитель, охлаждаемый жидким азотом. Полученная на станции телевизионная программа передастся далее на местный телецентр или ретрансляционную станцию и излучается в эфир в стандартных телевизионных каналах.

С 1974 года основная часть станций сети «Орбита» переведена в диапазон 4 ГГц для работы с новыми поколениями спутников «Молния-2» и «Молния-3». Эти же станции могут работать и с геостационарными спутниками типов «Радуга» и «Горизонт», Что такое геостационарный спутник, следует пояснить особо. Его запускают на очень высокую круговую орбиту, расположенную в плоскости экватора Земли. Высота геостационарной орбиты составляет около 36000 км. при этом период обращения спутника вокруг Земли в точности равен одним суткам, т. е. совпадает с периодом собственного вращения Земли. Вращаясь в ту же сторону, что и вся планета, геостационарный спутник как бы зависает над одной и той же точкой экватора. Антенну наземной станции достаточно навести на геостационарный спутник один раз. Это очень удобно, затруднения возникают лишь в полярных районах, из которых геостационарный спутник «виден» слишком низко над горизонтом. Поэтому полярные районы по-прежнему обслуживаются спутниками, летающими по вытянутым эллиптическим орбитам.

Стоимость сооружения наземной станции «Орбита» довольно высока. Поэтому строительство их экономически оправдано лишь в крупных населенных пунктах с числом жителей не менее пятидесяти тысяч. Когда все такие пункты были оснащены приемными станциями, развитие сети «Орбита» приостановилось и была поставлена задача создания новых, гораздо более дешевых спутниковых систем телевизионного вещания.

Новая система спутникового телевизионного вещания «Экран» создавалась специально для охвата телевидением небольших поселков, сел и деревень, полевых станов и экспедиций, разбросанных по бескрайним просторам Сибири, Крайнего Севера и частично Дальнего Востока. Зона обслуживания системы достигает площади 9 млн. кв. км, что составляет около 40 % всей территории страны.

Телевидение проникает в отдаленные уголки страны.

Первый спутник «Экран» был запущен 26 октября 1976 года на геостационарную орбиту. К этому времени уже была развернута опытная сеть из 60 приемных установок. Для системы «Экран» был выбран диапазон частот около 700 МГц, что по расчетам обеспечивало минимум стоимости системы. В приемных установках этого диапазона можно использовать недорогие транзисторные усилители и простые многоэлементные антенны типа «волновой канал». Спутник «Экран» оснащен передатчиком с огромной выходной мощностью: 200 Вт, что позволило получить высокое качество изображения при использовании простых приемных установок. Огромная раскрывающаяся в космосе антенна спутника содержит 96 спиральных излучателей, формирующих требуемую диаграмму направленности. Высоконаправленная антенна решает и еще одну задачу: уменьшает до допустимого значения уровень сигнала на территории сопредельных государств, использующих диапазон 700 МГц для наземного телевизионного вещания, и таким образом устраняет взаимные помехи.

Энергетическая установка спутника «Экран» включает панели солнечных батарей большой площади, обеспечивающие мощность до 2 кВт. Специальная трехосная система стабилизации и ориентации спутника с высокой точностью удерживает его в заданном положении относительно Земли и обеспечивает ориентацию диаграммы направленности антенны на зону обслуживания.

Для системы «Экран» разработаны приемные установки двух типов. Более сложная установка, предназначенная для сравнительно больших населенных пунктов, комплектуется синфазной антенной системой из 32 антенн типа «волновой канал». Супергетеродинный приемник и устройство демодуляции принятых сигналов выполнены в виде одной стойки (небольшого шкафа) размерами 140х70х34 см. Вся аппаратура собрана на транзисторах. Демодулированный сигнал подается на местную телевизионную станцию или ретранслятор.

Установки второго типа заметно проще. Они предназначены для подачи телевизионного сигнала на маломощный ретранслятор, в кабельную сеть, подобную сети коллективной телевизионной антенны. В них применяются антенные системы, состоящие всего из четырех антенн типа «волновой канал» (каждая антенна содержит рефлектор, активный вибратор из 30 директоров). Малогабаритный транзисторный приемник переносит спектр сигнала с принятой частоты диапазона 714 ± 12 МГц на частоты одного из стандартных телевизионных каналов, а также преобразует частотную модуляцию сигнала, используемую в спутниковом телевидении, в амплитудную, которая применяется в обычном наземном телевизионном вещании. Как видим, приемное устройство спутникового телевидения получилось достаточно компактным.

Система «Экран» оказалась весьма эффективным средством телефикации Сибири и Крайнего Севера СССР. Но использование ее в других районах страны невозможно, так как привело бы к созданию недопустимо больших помех наземным телевизионным средствам соседних государств. В связи с этим потребовалось создать аналогичную по простоте спутниковую систему подачи программ телевизионного вещания на некоторые области Урала, Средней Азии и Дальнего Востока.

Такая система была разработана и в 1979 году введена в действие. Система «Москва» работает в диапазоне 4 ГГц (длина волны 7,5 см) с геостационарными спутниками серии «Горизонт». Бортовой передатчик мощностью 40 Вт в сочетании с высоконаправленной антенной создает достаточно высокую напряженность поля у поверхности Земли, а благодаря высокой направленности антенны ослабляются помехи на соседних с зоной обслуживания территориях. Для приема телевизионного сигнала со спутника «Горизонт» требуется наземная антенна со сравнительно небольшим диаметром зеркала (всего 2,5 м). На входе приемника устанавливают неохлаждаемый параметрический усилитель, а все остальное приемное оборудование размещают в одной небольшой стойке. Для его размещения не требуется строительства специальных зданий.

Система «Москва» позволяет передавать один канал изображения с высоким качеством и два канала звукового сопровождения. Для охвата всей территории страны в системе используется четыре геостационарных спутника «Горизонт», размещенные в разных точках. Чисто приемных пунктов системы уже превысило 300 и продолжает быстро увеличиваться. Высвободившиеся станции системы «Орбита» используют для приема второй Общесоюзной телевизионной программы, ретранслируемой спутниками «Молния» и «Горизонт».

Телевизионные сигналы на спутники-ретрансляторы подаются с наземного передающего пункта. Для спутника «Экран», например, наземный пункт, расположенный в Подмосковье, оборудован антенной диаметром 12 м и передатчиком мощностью 5 кВт. Передача на спутник ведется в диапазоне 6200 МГц методом частотной модуляции с девиацией частоты ±9 МГц. Наземный пункт связан радиорелейной линией с Общесоюзным телевизионным центром в Останкине.

Особый интерес представляет использование спутников для телефонной и телеграфной связи. Установлено, что объем информации, которую нужно передавать оперативно и с высокой достоверностью, возрастает примерно пропорционально квадрату объема промышленного производства. Число телефонных разговоров также катастрофически растет. Линии проводной связи давно уже не вмещают всей массы информации, на КВ ее тоже уже не передашь, остаются УКВ. Радиорелейные линии с ретрансляторами через каждые 30…50 км отчасти решают проблему, но тянуть радиорелейную линию до Владивостока очень дорого, а до Петропавловска-Камчатского — практически невозможно: надо огибать Охотское море по малонаселенным местам с первозданной природой и суровым климатом. Спутник связи ретранслирует передачу только один раз, и, пожалуйста, готова линия связи Москва — Петропавловск-Камчатский!

Внутрисоюзная система спутниковой связи обеспечивает магистральную связь между крупными промышленными, административными и культурными центрами, а также передачу центральных программ радиовещания и изображений газетных полос из Москвы в различные города и пункты страны. В системе используют те же спутники, что и для ретрансляции телевизионных программ: «Радуга», «Горизонт» и «Молния». Земная ость системы связи содержит базовые станции, оснащенные антеннами диаметром 25 м. Они расположены в районе Москвы и Комсомольска-на-Амуре. Через них организован «космический мост» емкостью 240 двусторонних телефонных каналов между западными и восточными районами страны. Телефонные сообщения передаются цифровыми методами с использованием импульсно-кодовой модуляции. Пропускная способность высокочастотного ствола спутникового ретранслятора составляет 40 Мбит/с, что соответствует примерно 600 телефонным каналам. Через один ствол может одновременно работать до 36 наземных станций. Большинство наземных периферийных станций организовано на базе приемных телевизионных станций системы «Орбита».

Некоторые земные станции связи работают через спутники «Горизонт» с использованием аппаратуры «Группа», обеспечивающей передачу в цифровой форме группы из восьми телефонных каналов со скоростью 512 кбит/с. При этом общее число групп, передаваемое в одном стволе, достигает 24, что соответствует пропускной способности ствола около 200 телефонных каналов. Спутник «Горизонт» позволяет работать одновременно в шести стволах.

Велики успехи нашей страны в области создания международных спутниковых систем связи. 15 ноября 1971 года представители девяти социалистических государств: Болгарии, Венгрии, ГДР, Кубы, Монголии, Польши, Румынии, Советского Союза и Чехословакии подписали соглашение о создании международной организации «Интерспутник». Она предназначена для удовлетворения потребности стран в обмене телевизионными и радиовещательными программами, телефонно-телеграфными сообщениями и другими видами информации с помощью системы космической связи. Впоследствии членами «Интерспутника» стали Социалистическая Республика Вьетнам, Народная Демократическая Республика Йемен и Демократическая Республика Афганистан.