2.11. ЗАРОЖДЕНИЕ ЭЛЕКТРОАВТОМАТИКИ, ЭЛЕКТРОПРИБОРОСТРОЕНИЯ И ИНФОРМАЦИОННОЙ ЭЛЕКТРОТЕХНИКИ

2.11. ЗАРОЖДЕНИЕ ЭЛЕКТРОАВТОМАТИКИ, ЭЛЕКТРОПРИБОРОСТРОЕНИЯ И ИНФОРМАЦИОННОЙ ЭЛЕКТРОТЕХНИКИ

Длительное время электрическая энергия не могла получить широкого практического применения вследствие отсутствия экономичных генераторов. Но это относится к так называемым энергетическим применениям электричества, при которых затрата энергии пропорциональна количеству получаемого продукта, интенсивности производственного процесса.

Что же касается неэнергетических применений, не требующих значительных затрат электроэнергии, когда она используется лишь в качестве вспомогательного средства для передачи сигналов (телеграфия, телефония, электрическое взрывание мин, дистанционное управление и др.), то именно такие неэнергетические применения положили начало практическому использованию электричества [1.6].

Расширение неэнергетических применений электричества сыграло значительную роль в развитии электротехники вообще, так как в процессе создания разнообразных устройств такого рода неизбежно приходилось разрешать ряд практических и теоретических проблем в области электротехники: совершенствовать источники питания, создавать разнообразные приборы и приспособления, в том числе и автоматические, изготовлять изолированные проводники, исследовать свойства различных материалов, разрабатывать методы измерений, устанавливать единицы измерения величин. Все это привело к разработке схем и методов, получивших применение в современном телеуправлении, например, кодоимпульсного метода, принципа синхронно-синфазной связи, распределителей, исполнительных устройств.

Первым электротехническим устройством, предназначенным для широкого практического использования, был электрический телеграф. Наиболее совершенным оказался электромагнитный телеграф, выгодно отличавшийся от предшествовавших ему электростатического и электролитического телеграфов.

Первый практически пригодный электромагнитный телеграф был разработан русским ученым Павлом Львовичем Шиллингом (1786–1837 гг.) в 1828–1832 гг. Этот телеграф был основан на визуальном приеме кодовых знаков (рис. 2.23) и явился исходной конструкцией последующих телеграфов. П.Л. Шиллингом впервые был внедрен в область электрической передачи кодированный сигнал, чем было положено начало кодоимпульсному методу, который получил применение в современном телеуправлении [1.6; 2.18].

В процессе разработки проекта подводной телеграфной линии Петергоф — Кронштадт (1837 г.) П.Л. Шиллингом был впервые применен каучук для изолирования подводного кабеля, а также указана возможность использования воды или земли в качестве обратного провода. Кроме того, он впервые предложил подвешивать провода на столбах, что вначале было воспринято с недоверием.

Из всех предложенных после П.Л. Шиллинга конструкций электромагнитных телеграфов наиболее широкое применение получил телеграф (1844 г.) американца Сэмюэля Морзе (1791–1872 гг.). Заслуживает внимания разработанный Б.С. Якоби принцип электрической синхронно-синфазной связи, лежащей в основе современной техники дистанционной передачи и следящего электропривода. В таком телеграфе Б.С. Якоби стрелки передающего и приемного аппаратов совершали равномерно-прерывистое шаговое движение, перемещаясь с одинаковой скоростью (синхронно) и занимая одинаковое пространственное положение (синфазно). В середине XIX в. были разработаны конструкции буквопечатающих телеграфов [1850 г. — Б.С. Якоби, 1855 г. — английским физиком Дэвидом Юзом (1831–1900 гг.)].

Рис. 2.23. Схема телеграфа Шиллинга

1 — вольтов столб; 2 — клавиатура (передатчик); 3 — приемник; 4 — обратный провод; 5 — шесть рабочих мультипликаторов и один вызывной 

Среди первых применений электричества отметим использование его в военном деле, прежде всего для воспламенения пороховых зарядов. Эта проблема впервые была успешно разрешена в 1812 г. П.Л. Шиллингом, осуществившим на Неве опыт по электрическому взрыванию подводных мин.

Дальнейшие работы в области минной электротехники развивались в направлении совершенствования электрических запалов, создания специальных электрических машин и приборов для их питания («взрывные» машинки, индукционные катушки) и автоматизации самого процесса взрывания мины.

Так, например, Б.С. Якоби в начале 40-х годов XIX в. были разработаны специальный магнитоэлектрический генератор и индукционный прибор, которые были приняты на вооружение русской армией. Созданием этих приборов было положено начало внедрению батарейной и генераторной систем зажигания с применением индукционной катушки. Именно в минном деле впервые получил применение такой широко распространенный электротехнический прибор, как индукционная катушка Б.С. Якоби. Отечественными и зарубежными военными электротехниками были разработаны также разнообразные электроавтоматические приборы, обеспечивающие взрыв мины при ее соприкосновении с кораблем [2.14].

Характерной особенностью рассматриваемого периода являются первые попытки использования электрической энергии для целей автоматического контроля, управления и регулирования. Если ранее для этого применялись различные механические устройства, то начиная с 30-х годов XIX в. в автоматических приборах и установках получают все большее применение разнообразные электромеханические элементы. Происходит качественный сдвиг в развитии автоматики и телемеханики: зарождается новая область техники — электроавтоматика. Эффективность использования электричества в автоматических и телемеханических устройствах определялась прежде всего свойством электрического тока быстро распространяться по проводу. Основными элементами простейших электроавтоматических и телемеханических устройств были электромагниты и электромагнитные реле. К их числу могут быть отнесены электромагнитные реле в телеграфах П.Л. Шиллинга и Б.С. Якоби, электромеханический регистратор импульсов в пишущих телеграфах, устройства синхронизированного вращения в стрелочном и буквопечатающем телеграфах, релейные устройства для автоматического замыкания электрической цепи в телеграфах и минных установках.

Рис. 2.24. Схема автоматического переключателя 

В середине прошлого века разрабатываются электроавтоматические устройства для регистрации малых промежутков времени, контроля некоторых производственных процессов, создается ряд схем дистанционного управления.

Одним из первых наиболее совершенных регистрирующих устройств была разработанная в 1842–1845 гг. электробаллистическая установка русского военного электротехника Константина Ивановича Константинова (1817–1871 гг.) с электромагнитным хроноскопом и автоматическим переключателем цепей — прототипом распределителя — элемента современных автоматических и телемеханических установок. Автоматический переключатель (рис. 2.24) действовал следующим образом: двухступенчатый деревянный цилиндр 1 приводился во вращение грузом 2. При прохождении тока через электромагнит 5 тормозящий рычаг 3, посаженный на ось 4, удерживал цилиндр от вращения. После выстрела снаряд разрывал проволоку щита I и цепь электромагнит — источник тока (зажим 7) размыкалась. Спиральная пружина 8 отводила тормозящий рычаг до упора 9. Цилиндр вращался до тех пор, пока контактная пластина б не соединялась с пружиной следующего щита III, и цепь электромагнита снова замыкалась. С помощью такого устройства К.И. Константинову удалось осуществить измерение малых промежутков времени с точностью до 0,00006 с. Приборы, созданные К.И. Константиновым, автоматически регистрировали момент прохождения снаряда сквозь щит [1.6; 2.19].

В 60–70-х годах XIX в. в связи с развитием телефонии создаются специальные автоматические устройства — искатели, коммутаторы и др. Ведется разработка электротермических, электрохимических, электромагнитных и электромашинных устройств.

В рассматриваемый период было положено начало и энергетическим применениям электричества, в частности начинает развиваться промышленная электрохимия. Развитие промышленной электрохимии в огромной мере обязано открытию Б.С. Якоби в 1838 г. явления гальванопластики, которая позволила с помощью электролиза получать точные копии с поверхности предметов и сразу же нашла практическое применение в полиграфии, медальерном деле и других отраслях промышленности. Она явилась истоком созданного Б.С. Якоби метода нанесения на поверхность предмета металлических покрытий — гальваностегии. В середине прошлого века в России и за границей возникли крупные гальванотехнические промышленные предприятия, на многих заводах были созданы гальванические мастерские.

Развитие промышленной электрохимии также сыграло важную роль в развитии электротехники, вызвав необходимость совершенствования источников постоянного тока (в частности, создания экономичного генератора) и углубления электрохимических исследований.

Развитие исследований в области электрических и магнитных явлений и расширение их практического применения вызвали необходимость разработки методов измерений основных электрических величин и создания электроизмерительных приборов. Принцип действия первых электроизмерительных приборов был основан на отклонении магнитной стрелки электрическим током; такие приборы являлись лишь индикаторами тока. Первым из них, как уже указывалось ранее, был мультипликатор И.Х. Швейггера.

В первых стрелочных приборах, служивших для измерения тока, синус или тангенс угла отклонения стрелки был пропорционален значению тока, поэтому такие приборы назывались соответственно синус-гальванометрами и тангенс-гальванометрами. Первая попытка отградуировать гальванометр была сделана в 1839 г. Б.С. Якоби.

Уже в первой половине XIX в. создаются более чувствительные и точные гальванометры, электрогальванометры, астатический гальванометр и т.п. Были разработаны баллистический (Э.Х. Ленц, 1832 г.) и компенсационный [немецкий физик Иоганн Христиан Поггендорф (1796–1877 гг.), 1841 г.] методы измерений, мостовая измерительная схема (Ч. Уитстон 1843 г.) и др.

В 40–60-х годах XIX в. разрабатываются первые конструкции реостатов (вольтагометр Якоби), реохордов (И.Х. Поггендорф), магазинов сопротивлений и других подобных устройств.

В рассматриваемый период стабилизируются наименования основных электрических величин, постепенно устанавливаются термины: электродвижущая сила (ЭДС), сила тока, электрическое сопротивление, количество электричества и др. Электрические единицы и эталоны были утверждены на Чикагском электротехническом конгрессе в 1893 г. [1.6].

Данный текст является ознакомительным фрагментом.