5.5.2. ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА

5.5.2. ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА

Отключая поврежденный синхронный генератор, трансформатор или линию электропередачи и избавляя электроэнергетическую систему от сильного возмущающего воздействия в виде КЗ, автоматические устройства релейной защиты создают часто не менее сильные возмущающие воздействия, т.е. скачкообразные уменьшения генерируемой или передаваемой электроэнергии — нарушения баланса мощности. Поэтому уже на ранних этапах развития ЭЭС появились устройства противоаварийной автоматики, предназначенные для демпфирования возмущающих воздействий. В самом начале 30-х годов появились устройства автоматического включения резервного электрооборудования (УАВР), прежде всего трансформаторов собственных нужд электростанций.

Особенно эффективными оказались автоматические устройства повторного включения (УАПВ) линий электропередачи: в большинстве своем дуговые КЗ, особенно на землю на воздушных линиях систем с глухо заземленной нейтралью, самоликвидировались после отключения линий релейной защитой. Поэтому последующее их автоматическое включение УАПВ восстанавливало предшествовавшую КЗ схему ЭЭС. Начиная с конца 30-х годов и, особенно, в годы Великой Отечественной войны они получили массовое распространение во всех ЭЭС и не только на воздушных, но и на кабельных линиях, а впоследствии на шинах подстанций и одиночных трансформаторах. Первой монографией, обобщающей отечественный опыт, явилась вышедшая в 1950 г. книга И.И. Соловьева «Автоматизация энергетических систем» [5.30]. По инициативе и под руководством ее автора разрабатывались и внедрялись первые УАПВ.

Появившееся в тяжелейших условиях электроснабжения в военной обстановке предложенное И.А. Сыромятниковым смелое решение: при угрозе развития системной аварии включать синхронные генераторы на параллельную работу методом самосинхронизации — позволило внедрить несинхронные устройства автоматического повторного включения магистральных линий электропередачи с двусторонним питанием (НАПВ), а затем и устройства автоматической ресинхронизации отключившихся синхронных генераторов.

Быстродействующие современные устройства релейной защиты и выключатели линий электропередачи позволили осуществлять быстродействующее (БАПВ) и ускоренное (УАПВ) повторное включение. Создание высокочувствительных избирательных органов, определяющих, на каком из проводов воздушной линии высокого или сверхвысокого напряжения произошло КЗ на землю, позволило внедрить однофазное автоматическое повторное включение (ОАПВ). Впервые ОАПВ с автоматическим переводом линий с обрывом одного провода в неполнофазный режим было успешно применено во время Великой Отечественной войны.

Современные микросхемные комплексные автоматические устройства осуществляют любой из указанных видов АПВ и автоматическое включение линий связи вышедших из синхронизма частей ЭЭС — АПВ с синхронизацией (АПВС). Они разработаны во ВНИИЭ (Г.Г. Фокин, Г.Г. Якубсон) и ВНИИР.

Следующим этапом развития противоаварийной автоматики являлись разработка и внедрение автоматов, функционирующих при снижении частоты вследствие возникшего дефицита активной мощности. Автоматический частотный пуск с самосинхронизацией и набором нагрузки гидрогенераторов и автоматическая частотная разгрузка (АЧР) в виде автоматов временного отключения наименее ответственных потребителей электроэнергии (с последующим их частотным АПВ) являлись эффективными средствами предотвращения системных аварий вследствие лавины частоты. Соответственно появились и автоматические устройства ограничения повышения частоты в избыточной по мощности части ЭЭС.

Российскими учеными и специалистами были созданы основы теории и техники противоаварийной автоматики (Б.И. Иофьев, Л.А. Кощеев, Я.Н. Лугинский, М.А. Беркович, А.А. Окин, С.А. Совалов, В.А. Семенов).

Современная общесистемная противоаварийная автоматика ЕЭС имеет назначение не допустить нарушения динамической или статической устойчивости параллельной работы электрических станций или сохранить результирующую устойчивость функционирования ЕЭС. Она состоит из двух рассредоточенных по электроэнергетическим системам комплексов автоматических устройств, связанных каналами обмена информацией и централизованно управляемых от управляющего вычислительного комплекса (УВК), а именно: автоматики предотвращения нарушения устойчивости (АПНУ) и автоматики ликвидации возникающего асинхронного режима работы (АЛАР).

Особенно сложной является АПНУ. Она функционирует на основе результатов, производимых ЭВМ циклически (через 5—10 с) расчетов устойчивости. При этом вырабатываются необходимые по интенсивности и длительности (дозированные) противоаварийные воздействия на электроэнергетические объекты для каждого из возможных возмущающих воздействий. После каждого цикла расчетов они передаются на места их возможного применения и запоминаются там как готовые к немедленной реализации по безынерционно поступающему сигналу о возникшем возмущающем воздействии.

Для предотвращения нарушения динамической устойчивости производятся, например, кратковременные импульсная разгрузка паровых турбин или электрическое торможение гидрогенераторов. Предотвращение нарушения статической устойчивости в послеаварийных и новых установившихся режимах работы достигается переводом вращающихся гидроагрегатов из режима работы синхронным компенсатором в генераторный режим, отключением части гидрогенераторов и другими действиями, направленными на ликвидацию перегрузки линий электропередачи.

Аналогичные дозированные противоаварийные воздействия характерны и для АЛАР. Если асинхронный режим ликвидировать не удается, действует делительная автоматика, отключающая от ЭЭС несинхронно работающую электростанцию. Последующее восстановление связи производится, как указывалось, устройствами АПВ с синхронизацией.

В совершенствующихся АПНУ и АЛАР все шире применяются современные ПЭВМ. Их разработки ведутся в ВЭИ (В.Д. Ковалев), институте «Энергосетьпроект» и ВНИИР.

Данный текст является ознакомительным фрагментом.