6.5. ТРАНСФОРМАТОРЫ
6.5. ТРАНСФОРМАТОРЫ
Потребность дореволюционной России в электрооборудовании, в том числе в трансформаторах, была невелика и удовлетворялась несколькими универсальными электротехническими заводами — филиалами иностранных фирм. Мощность выпускавшихся в то время трансформаторов ограничивалась сотнями киловольт-ампер в единице при напряжении 6 кВ и только в отдельных случаях достигала 1000 кВ?А при напряжении 35 кВ.
Принятый в России в декабре 1920 г. план электрификации (ГОЭЛРО) поставил вопрос о производстве отечественного оборудования, в том числе и трансформаторов.
В 1928 г., когда в Москве вступил в строй специализированный трансформаторный завод Московский электрозавод (МЭЗ) им. В.В. Куйбышева (в настоящее время ОАО холдинговая компания «Электрозавод»), начинает свою историю отечественное трансформаторостроение.
В 1928–1929 гг. на МЭЗ началось серийное производство трансформаторов класса напряжения 35 кВ мощностью до 5600 кВ?А, а в 1931 г. был построен первый в стране силовой трехфазный трансформатор мощностью 2500 кВ?А на напряжение 110 кВ. Помимо силовых трансформаторов завод изготовлял специальные трансформаторы для электрических печей с вторичными токами 30–40 кА, взрывозащищенные — для шахт, измерительные трансформаторы напряжения до 110 кВ и т.д. В 1938 г. были поставлены трансформаторы для первой в СССР линии электропередачи 220 кВ Свирская ГЭС — Ленинград. Повышающие однофазные трансформаторы, составляющие трехфазную группу 3x46 MB?А напряжением 220 кВ, были самыми мощными в довоенные годы.
Рис. 6.17. Однофазные измерительные трансформаторы напряжения
а — типа ЗНОМ-35 конструкции 1954 и 1966 гг.; б — типа НОКЭ-10 с литой изоляцией на эпоксидной смоле и типа НОМ-10
В 1935–1940 гг. были разработаны и освоены конструкции сложных трансформаторов мощностью до 31 500 кВ?А с регулированием напряжения под нагрузкой; трансформаторов мощностью до 15 000 кВ?А с вторичными токами до 70 кА для питания электрических печей; измерительных трансформаторов напряжения на рабочее напряжение 220 кВ, выполненных каскадными в фарфоровых чехлах; испытательных трансформаторов на 500 кВ.
Обширные комплексные исследования проводились МЭЗ в тесном содружестве с Всесоюзным электротехническим институтом (ВЭИ). Большой научно-технический вклад в разработку теоретических и практических вопросов трансформаторостроения внесли в этот период Г.В. Алексенко, Н.И. Булгаков, Б.Б. Гельперин, Э.А. Манькин, Г.Н. Петров, А.В. Сапожников и др.
На основе систематических исследований в области изоляции и перенапряжений была предложена и внедрена в 1938–1939 гг. емкостная система защиты обмоток напряжением 110 — 220 кВ, позволившая обеспечить импульсную прочность обмоток при атмосферных перенапряжениях. За разработку и внедрение в производство конструкций ряда трансформаторов группа инженеров МЭЗ была удостоена Государственной премии.
В тяжелые годы Великой Отечественной войны трансформаторостроение продолжало развиваться, хотя и более медленными темпами. Трансформаторы выпускались в основном на МЭЗ и свердловском заводе «Уралэлектроаппарат».
В первые послевоенные годы количественный выпуск трансформаторов в СССР быстро достиг довоенного уровня, при этом повышался технический уровень трансформаторного оборудования, совершенствовалась конструкция, росли предельные мощности и напряжения, создавались новые виды трансформаторов и реакторов, разрабатывались серии, превосходившие довоенные по технико-экономическим показателям.
В военные и первые послевоенные годы были разработаны конструкции большинства типов измерительных трансформаторов напряжения в широком диапазоне классов напряжения — от 6 до 220 кВ, (рис. 6.17).
В 1949 г. был выпущен первый трансформатор на крупнейшем Запорожском трансформаторном заводе (ЗТЗ); в 1960 г. первую продукцию выпустил Тольяттинский электротехнический завод; расширялись МЭЗ и завод «Уралэлектротяжмаш». В 50–60-е годы созданы новые заводы по производству трансформаторов на Кавказе, в Средней Азии, на Дальнем Востоке, Украине и в Белоруссии. Совершенствование трансформаторного оборудования осуществлялось на основе теоретических, научно-технических и прикладных исследований ведущих электротехников и энергетиков страны: Ю.Б. Бородулина, А.Г. Крайза, В. А. Трапезникова. П.М. Тихомирова, Л.М. Шницера и др.
В этот же период начался переход к широкому внедрению трехфазных трансформаторов с высшим напряжением 110 кВ и более взамен групп из трех однофазных. Трехфазные трансформаторы имели более низкие потери, это позволило достичь также экономии материалов, удешевить сооружения подстанций, снизить расходы на перевозку и монтаж.
Рис. 6.18. Сердечник однофазного шунтирующего реактора мощностью 50 MB?А на напряжение 400 кВ для линии электропередачи Куйбышевская ГЭС — Москва (1955 г.)
Большая работа проведена по освоению холоднокатаной текстурованной электротехнической стали, имеющей более низкие удельные потери и намагничивающую мощность, что позволило значительно снизить потери и массу активной стали и масла.
В 1956–1957 гг. на «Армэлектрозаводе» (Армения) при участии МЭЗ была спроектирована серия трансформаторов мощностью до 560 кВ?А на напряжение 6 и 10 кВ, в которой на базе применения холоднокатаной стали снижены потери в сравнении с аналогичными ранее выпускавшимися трансформаторами и на 20–30% уменьшены масса активной стали и масла.
В 1949 г. на МЭЗ возобновились исследовательские и конструкторские работы по созданию трансформаторного оборудования на напряжение 400 кВ. Над этой проблемой работали также инженеры ЗТЗ и ВЭИ. Весь комплекс трансформаторного оборудования на напряжение 400 кВ — в то время самого высокого в мире рабочего напряжения электропередачи — был создан на основе исследований, выполненных отечественными инженерами и учеными. В комплекс входили трансформаторы на 400 кВ, агрегаты для регулирования под нагрузкой, шунтирующие реакторы для компенсации емкостных токов в линии на напряжение 400 кВ (рис. 6.18). Результаты проведенных исследований были использованы в дальнейшем при разработке трансформаторов для линий электропередачи на напряжении 500 кВ (рис. 6.19).
Рис. 6.19. Трансформатор типа ТЦ-20000В/500
В 1955 г. на МЭЗ и ЗТЗ были спроектированы и в 1956 г. изготовлены первые однофазные трехобмоточные автотрансформаторы класса напряжения 220 кВ групповой мощностью 3x40 и 3x80 MB?А, а к 1958 г. суммарная мощность изготовленных автотрансформаторов достигла 8,5 млн. кВ?А. Применение автотрансформаторов взамен трансформаторов позволило значительно снизить расход активных материалов (меди и стали), трансформаторного масла и других материалов, а также уменьшить потери электроэнергии.
В послевоенный период началось освоение производства комплексных трансформаторных понижающих подстанций, полностью собираемых и испытываемых на заводе-изготовителе. При установке таких подстанций в центрах нагрузки обеспечивается значительное снижение стоимости низковольтных сетей и потерь в них, объема монтажных работ на месте установки, высвобождаются полезные площади. МЭЗ с 1950 г. начал серийный выпуск комплектных подстанций с одним или двумя трансформаторами мощностью до 100 кВ?А (сухими, масляными или заполненными синтетическим жидким диэлектриком).
Рис. 6.20. Комплектная трансформаторная подстанция наружной установки типа КТПН-1000
Позднее производство комплектных трансформаторных подстанций было освоено и другими заводами, а в настоящее время более 20% силовых трансформаторов мощностью до 1000 кВ?А на напряжение 6 и 10 кВ (со вторичным напряжением 220 и 380 В) поставляются в виде комплектных подстанций (рис. 6.20).
Большой объем исследовательских работ был выполнен на МЭЗ и ЗТЗ по созданию комплекса оборудования для опытно-промышленной линии электропередачи постоянного тока Волгоград — Донбасс напряжением ±400 кВ и мощностью 720 МВт; при этом были обеспечены высокая надежность изоляции схемных обмоток, связанных с преобразователями, и их электродинамическая стойкость. Была разработана конструкция одного из ответственных элементов преобразовательного оборудования — линейного реактора типовой мощностью 160 MB?А (на ток 900 А и индуктивность 1 Гн) (рис. 6.21), а также специальное оборудование: групповые и индивидуальные изолирующие трансформаторы собственных нужд (рис. 6.22); импульсные трансформаторы для питания вентилей; измерительные трансформаторы постоянного напряжения ±200 кВ и ±400 кВ и реакторы — фильтровые, высокочастотные, токоограничивающие.
Рис. 6.21. Линейный реактор для передачи электроэнергии постоянным током ±500 кВ
Период 1959–1967 гг. характеризовался бурным ростом выпуска трансформаторов, в первую очередь крупных и предельных мощностей. В 1960 г. МЭЗ выпустил первые автотрансформаторы класса напряжения 220 кВ со встроенной в нейтраль регулировочной обмоткой и аппаратурой регулирования под нагрузкой (РПН). Внедрение встроенного (РПН) дало возможность отказаться от вольтодобавочных агрегатов, обеспечив при этом значительную экономию активных материалов и снижение потерь энергии.
Рис. 6.22. Изолирующий трансформатор ИИ-110
Рис. 6.23. Автотрансформатор АТДЦТН-200000/330 с РПН в линии на стороне напряжения 110 кВ
Освоенные Всесоюзным институтом трансформаторостроения (ВИТ, Запорожье) и ЗТЗ быстродействующие переключающие устройства класса напряжения 110 кВ с активными токоограничивающими сопротивлениями позволили выполнить РПН на стороне 110 кВ, что наиболее эффективно в достаточно распространенных автотрансформаторах 220/110 кВ (рис. 6.23).
Большим достижением трансформаторостроения стала разработка в середине 60-х годов мощных автотрансформаторов класса напряжения 750 кВ. Для систем напряжением 750 кВ необходимы шунтирующие реакторы, мощность которых превышает мощность установленных трансформаторов (соотношение мощностей примерно 2–2,5 квар/(кВ?А). На основе ранее спроектированного однофазного высоковольтного шунтирующего реактора мощностью 55 Мвар на напряжение 500 кВ (рис. 6.24) МЭЗ изготовил шунтирующий реактор на напряжение 750 кВ, который, как и аналогичный на напряжение 500 кВ, позволил добиться уменьшения расхода материалов и габаритов за счет оригинальной конструктивной схемы. Для линии напряжением 750 кВ на МЭЗ был разработан измерительный емкостный трансформатор напряжения типа НДЕ -750 (рис. 6.25).
Рис. 6.24. Однофазный шунтирующий реактор мощностью 55 Мвар на напряжение 500 кВ конструкции 1966 г. (без сердечника, с наружной магнитной системой, охватывающей обмотку)
Рис. 6.25. Емкостный трансформатор напряжения
В эти годы был достигнут значительный рост предельных мощностей трансформаторов; так, в 1968 г. на ЗТЗ был выпущен однофазный трансформатор мощностью 417 MB?А класса напряжения 500 кВ. Трехфазная группа из таких трансформаторов мощностью 1250 MB?А служит для питания от двух генераторов по 500 МВт.
Необходимость использования в полной мере свойств холоднокатаной текстурованной электротехнической стали поставила в эти годы ряд специальных требований к конструкции и технологии изготовления магнитопроводов. Одним из мероприятий, позволивших уменьшить потери и ток холостого хода в трансформаторах, стал отказ от отверстий в пластинах для прессовки стержней и ярем («бесшпилечная» прессовка) (рис. 6.26, 6.27).
Определяющей тенденцией в последующие годы явилось повышение единичных мощностей и напряжений трансформаторов.
После испытаний и исследований автотрансформатора мощностью 210 MB?А на напряжение 1150/500 кВ (рис. 6.28), установленного на высоковольтной линии 1150 кВ, на ЗТЗ в 1975 г. был разработан автотрансформатор групповой мощностью 2000 MB?А на напряжение 1150 кВ.
Опыт эксплуатации на линии электропередачи 750 кВ позволил освоить серийное производство трансформаторного оборудования на напряжение 750 кВ, разработать и изготовить однофазные автотрансформаторы групповой мощностью 1000 и 1250 MB?А напряжением соответственно 750/330 и 750/500 кВ с регулированием под нагрузкой, используемые в мощных энергетических блоках ряда атомных электростанций европейской части страны. Серийно выпускается трансформаторное оборудование для энергетических блоков мощностью 800–1200 МВт (рис. 6.29) напряжением 330 и 500 кВ.
Рис. 6.26. Магннтопровод трансформатора типа ТЦ-630000/220 с металлическими бандажами
Рис. 6.27. Бесшпилечный магннтопровод трансформатора типа ТРДН-63000/110
В 1975 г. созданы первые образцы трансформаторного оборудования для линий электропередачи постоянного тока ±750 кВ, что явилось результатом целого комплекса научно-исследовательских, опытно-конструкторских и технологических работ в области электрической изоляции, электромагнитных и тепловых нагрузок. Проведение исследований и испытаний трансформаторного оборудования для высоковольтной линии постоянного тока (±750 кВ) стало возможным после ввода экспериментального комплекса на высокие напряжения в ВИТ; здесь же проводились испытания на более высокие напряжения, в частности ± 1250 кВ постоянного тока и 1800 кВ переменного тока.
В 70–80-х годах создана серия быстродействующих переключающих устройств для трансформаторов с регулированием напряжения под нагрузкой с активными токоограничивающими сопротивлениями на напряжение 330 кВ и токи до 2000 А. В эти же годы проводились испытания трансформаторов с контактно-тиристорным переключающим устройством, а также исследования по созданию бесконтактных переключающих устройств.
В 1989 г. в Запорожье изготовлен и испытан сверхмощный блочный трансформатор типа ТНЦ-1000000/220 для Нижневартовской ГРЭС, спроектированный с учетом работы в холодном климате (специальное покрытие на баке, который выполнен из морозостойкого материала).
Рис. 6.28. Однофазный автотрансформатор мощностью 210 MB?А на напряжение 1150/500 кВ для опытного участка линии электропередачи 1150 кВ переменного тока
Рис. 6.29. Блочный трехфазный трансформатор мощностью 630 MB?А на напряжение 330 кВ для Ленинградской АЭС
Результаты тепловых испытаний, комплекс технологических усовершенствований, новые способы изготовления изоляционных деталей из электрокартона позволили сократить размеры изоляционных промежутков, что дало возможность существенно повысить коэффициент заполнения обмоток в окне магнитопровода; разработка оптимальных схем шихтовки магнитопроводов и конструкции их крепления дала возможность снизить потери холостого хода на 15–20%.
Глубокие исследования электромагнитных явлений в трансформаторах и реакторах позволили разработать надежные методы расчета и снижения добавочных потерь от магнитных полей рассеяния, исключать местные перегревы в элементах конструкции и повысить эксплуатационную надежность. В 70–80-х годах внесен большой вклад в достижение динамической стойкости мощных трансформаторов, что является одной из самых актуальных проблем современного трансформаторостроения; усовершенствованы методы расчета прочности и устойчивости обмоток, внедрен ряд технологических и конструктивных мер, обеспечивших повышение стойкости трансформаторов к воздействию усилий при коротких замыканиях в эксплуатации.
Рис. 6.30. Трехфазный сухой защищенный трансформатор мощностью 25 кВ?А с пространственной магнитной системойа — общий вид; б — пространственный трехфазный навитый магнитопровод
Постоянное повышение технического уровня силовых трансформаторов достигнуто за счет применения трансформаторной стали с улучшенными характеристиками; внедрения транспонированных и многожильных проводов, что упрощает и ускоряет намотку обмоток при одновременном снижении добавочных потерь в них: внедрения новых марок трансформаторных масел с улучшенной стабильностью и повышенным сроком службы и целого ряда других научно-технических решений.
На основе комплексной разработки конструкции, технологических процессов и специального оборудования разработана серия трансформаторов I, II габаритов (до 1000 кВ?А) с пространственной конструкцией магнитопровода и использованием электротехнической фольги и ленты для обмоток (рис 6.30.).
Необходимое для современной энергетики преобразование переменного тока в постоянный наиболее целесообразно производить с помощью статических преобразовательных агрегатов, в состав которых входит трансформаторное оборудование: силовые преобразовательные трансформаторы, уравнительные и токоограничивающие реакторы, дроссели насыщения и др. Основными потребителями преобразовательных установок являются электролизные производства в цветной металлургии и химической промышленности, тиристорный электропривод прокатных станов в черной металлургии; электрифицированный транспорт; электротермия и т.д. Преобразовательные установки (рис.6.31) широко внедряются в современные технологические процессы (плазмотронная и электронно-лучевая плавка, электрохимическая обработка металлов и др.). Для этих целей разработаны, в частности, трансформаторы типа ТЦНП-40000/10 на ток 50 кА и напряжение 850 В для химической промышленности; ТЦНП-80000/20 на ток 63 кА и напряжение 850 В для цветной металлургии, сухие трансформаторы типа ТСЗП мощностью до 1600 кВ?А для метрополитена.
Рис. 6.31. Высоковольтный преобразовательный агрегат для питания электрофильтров газоочистки
Рис. 6.32. Электропечной трансформатор
Освоены и серийно выпускаются специальные трансформаторы, предназначенные для питания электропечей различного назначения: дуговых сталеплавильных, руднотермических, индукционных плавильных, печей электрошлакового переплава, по выплавке корунда и т.д. (рис. 6.32).
Несмотря на сложности, связанные с распадом в 1991 г. СССР, трансформаторостроение России продолжает развиваться, обеспечивая потребности энергетики. Наиболее важными направлениями дальнейших исследований являются: рост номинальных мощностей и напряжений; уменьшение потерь энергии в силовых трансформаторах; уменьшение их размеров и массы; повышение надежности; динамическая стойкость обмоток при коротких замыканиях. Решение этих проблем потребует преодоления значительных трудностей, связанных с ограничениями по габаритам и массе при транспортировке трансформаторов предельных мощностей, изучения и освоения материалов, способных заменить традиционно используемые в трансформа-торостроении. Поэтому уже в настоящее время разрабатываются железнодорожные транспортеры повышенной грузоподъемности; рассматриваются возможности перевозки трансформаторов водным путем, что снимет ограничения по габаритам и массе.
Большое внимание уделяется перспективам улучшения электромагнитных характеристик электротехнических сталей и повышению уровня автоматизации производства магнитопроводов, включая дальнейшее внедрение витых пространственных магнитопроводов.
Дальнейшее увеличение единичных мощностей силовых трансформаторов может быть достигнуто при использовании сверхпроводниковой технологии, исследования которой ведутся уже длительное время; перспективными являются также интенсивные исследования по созданию трансформаторов с газоиспарительной системой изоляции и охлаждения.
В последнее время получил развитие новый класс магнитных материалов — аморфные сплавы, которые по оценкам специалистов могут снизить потери энергии в сердечниках до 70%. Значительное снижение потерь холостого хода при применении сталей требует расширения исследований с целью получения материала с нужными параметрами, а также разработки технологии изготовления магнитопроводов из них.
Данный текст является ознакомительным фрагментом.