8.2.2. ГРЕБНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ (СИСТЕМЫ ЭЛЕКТРОДВИЖЕНИЯ)

8.2.2. ГРЕБНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ (СИСТЕМЫ ЭЛЕКТРОДВИЖЕНИЯ)

История развития гребных электрических установок (ГЭУ) тесно связана как с развитием судов различных типов и назначений, так и с техническим развитием машиностроения, электротехники и электроники [8.15].

В зависимости от применения на судах тех или иных генераторов, ГЭД и преобразователей развитие ГЭУ шло по следующим направлениям:

ГЭУ постоянного тока;

ГЭУ переменно-постоянного тока;

ГЭУ переменного тока;

единые электрические системы с ГЭУ переменно-постоянного или переменного тока.

Исторической родиной ГЭУ является Россия. В 1911 г. при проектировании на Балтийском заводе линейных кораблей типа «Севастополь» был предложен вариант совместного использования ДГ и ГЭД для обеспечения экономического хода корабля.

В начале проектирования механизмов специалисты столкнулись с рядом нерешенных вопросов, основным из которых было обеспечение надежности применения электродвижения. 2 апреля 1911 г. состоялось заседание Морского технического комитета (МТК) по этому вопросу. В его работе приняли участие известные кораблестроители А.Н. Крылов и И.Г Бубнов, которые подчеркнули экономичность электродвижения. У присутствующих вызывала сомнение возможность обеспечения надежности вариантов компоновки турбины, ГЭД и гребного вала. Сомнение мог рассеять только эксперимент, поэтому принятие решения отложили до проведения опытов на учебном судне «Рында», и в дальнейшем электродвигатели применения не нашли.

В 30-е годы проводились работы по освоению Северного морского пути, в связи с чем руководство Главсевморпути рассчитывало на пополнение ледокольного флота за счет создания проверенных типов ледоколов и новых ледоколов с дизель-электрическими установками (ДЭУ) мощностью 6–10 МВт.

Спроектированный институтом «Судопроект» ледокол водоизмещением 12 000 т с ДЭУ мощностью 8,8 МВт был предпочтительнее парового из-за большей дальности плавания и лучшей маневренности. В 1934 г. было принято решение о параллельной постройке паровых и дизель-электрических ледоколов, но к строительству последних так и не приступили.

В 1938–1940 гг. по заказу СССР в Амстердаме (Нидерланды) были построены два товаро-пассажирских турбоэлектрохода каждый с двумя ТГ и двумя ГЭД общей мощностью на валах 8,68 МВт.

Таким образом, до Великой Отечественной войны и в послевоенные годы в СССР эксплуатировалось лишь несколько турбоэлектроходов зарубежной постройки. В 1947 г. было принято решение о постройке серии мощных ледоколов для Арктики, предусматривалось также создание транспортных судов ледового плавания, которые могли бы следовать за мощными ледоколами.

В том же году организовывается специальное бюро по проектированию ледоколов и судов ледового плавания — ЦКБ-15 (позднее ЦКБ «Айсберг»), первой работой которого стал проект ледокола с турбоэлектрической установкой на постоянном токе мощностью 22 МВт.

В процессе проектирования этого ледокола специалисты ЦКБ-15 выполнили большой объем опытных работ и исследований, результаты которых были использованы в последующие годы при проектировании первого в мире атомного ледокола «Ленин» и атомных ледоколов второго поколения типа «Арктика» (главные конструкторы по электрооборудованию Г.А. Агафонов, Б.А. Горбунов).

Первым дизель-электроходом отечественной постройки стал танкер «Генерал Ази-Асланов», вступивший в эксплуатацию в 1950 г. На нем впервые применили тепловозные высокооборотные ДГ с дизелем Д50 и специально спроектированное и изготовленное электрооборудование. Дизели Д50 показали себя надежными в эксплуатации, и было решено оборудовать ими крупную серию проектировавшихся китобойных судов, отличающихся от судов транспортного флота более тяжелыми режимами эксплуатации.

Китобойное судно имело один вал с двухъякорным ГЭД постоянного тока мощностью 2x1400 кВт напряжением 920 В на каждом якоре и частотой вращения 180/200 об/мин, использовалось четыре главных ДГ типа 5Д50, каждый из которых состоял из дизеля Д50 и одноякорного генератора постоянного тока мощностью 760 кВт напряжением 460 В при частоте вращения 740 об/мин. Цепь главного тока одноконтурная с попеременно-последовательным соединением генераторов и якорей ГЭД. Машинные возбудители генераторов и ГЭД обеспечивали постоянство мощности дизелей во всех режимах работы ГЭУ. Головное китобойное судно серии «Мирный» вступило в строй в конце 1956 г. (всего за период с 1956 по 1964 г. было построено 90 судов, которые входили в состав всех советских китобойных флотилий).

Высокая скорость (17 узлов), хорошие маневренные качества и экономичность показали их преимущества перед аналогичными судами с другими энергетическими установками при эксплуатации в Арктике и на Дальнем Востоке. При проектировании в ЦКБ «Балтсудопроект» (главные конструкторы по электрооборудованию А.В. Черников, Е.И. Трапер) рефрижераторного судна типа «Актюбинск» и сухогруза типа

«Днепрогэс» в ГЭУ этих судов были применены созданные к этому времени транспортные двигатели-дизели типа Д100.

В состав ГЭУ этих судов входили четыре ДГ типа ЗД100, каждый из которых состоял из одноякорного генератора постоянного тока мощностью 1375 кВт напряжением 500 В; один двухъякорный ГЭД постоянного тока мощностью 2x2580 кВт напряжением на якоре 1000 В и частотой вращения 115/140 об/мин; щиты, преобразователи, посты управления.

Цепь главного тока была одноконтурная, как и на китобойном судне «Мирный», с попеременно-последовательным соединением генераторов и ГЭД.

В 1960 г. вступил в строй головной рефрижератор типа «Сибирь» (всего было построено 60 судов), который являлся улучшенным проектом рефрижератора типа «Актюбинск» (ЦКБ-32 и ЦКБ-53).

При таком же составе ГЭУ, как и на судах «Актюбинск» и «Днепрогэс», рефрижераторы типа «Сибирь» имели следующие отличия: цепь главного тока обеспечивала 33 сочетания (из 35 возможных) включения генераторов и якорей ГЭД вместо семи; при потере вращающего момента одним из последовательно включенных ДГ цепь обеспечивала при мощности оставшихся генераторов ход судна и реверс ГЭД в течение 5 мин, что повышало безопасность судна при плаваниях в узких местах и при его швартовке.

50-е годы характеризовались началом массового строительства отечественных судов с ГЭУ. Электротехническая промышленность осваивает новые типы электрических машин, щитов, аппаратуры, устройств и других элементов ГЭУ. Накапливался опыт проектирования, строительства и эксплуатации электроходов.

Решению задач восстановления отечественного флота в относительно короткие сроки способствовало создание ряда ДЭУ на основе дизелей общего применения типа Д50 и Д100 для китобойных судов, производственных рефрижераторов промыслового флота, грузопассажирских, сухогрузных, ледокольно-транспортных судов и др. Эти ДЭУ отличались относительно малой удельной массой, большой надежностью благодаря нескольким главным агрегатам, наличием изолированного центрального поста управления (ЦПУ) в машинном отделении с дистанционным управлением ГЭУ, а также дистанционным управлением всей энергетической установкой из рулевой рубки.

В 1959 г. вступил в строй первый в мире атомный ледокол «Ленин», спроектированный ЦКБ «Айсберг» (ЦКБ-15). В состав ГЭУ входило следующее основное оборудование: четыре главных ТГ, состоящих каждый из турбины с редуктором, от которого приводились два двухъякорных генератора постоянного тока мощностью 2x1920 кВт напряжением 2x600 В при частоте вращения 595 об/мин; на каждой турбине у одного из двух генераторов оба якоря были электрически соединены для параллельной работы и имели уравнительные обмотки и общую коробку выводов; три двухъякорных ГЭД постоянного тока; средний ГЭД мощностью 2x7200 кВт напряжением 2x1200 В при частоте вращения 150/195 об/мин; два бортовых ГЭД мощностью 2x3600 кВт напряжением 2x1200 В при частоте вращения 150/215 об/мин; возбудители, щиты, пульт управления, дистанционный пост управления и другое оборудование.

Многолетняя эксплуатация атомного ледокола «Ленин» подтвердила перспективность использования АЭУ на ледоколах. Был накоплен ценный опыт и определены пути дальнейшего развития ледокольного флота. Для растущих грузоперевозок Северным морским путем необходимо было пополнить флот ледоколами с более мощными атомными установками.

ЦКБ «Айсберг» выполнило проектирование атомных ледоколов второго поколения с АЭУ мощностью 55,2 МВт, превосходящих ледокол «Ленин» по мощности в 1,7 раза, по энерговооруженности и удельной тяге в 1,5 раза. На ледоколах нового поколения принято иное распределение мощности между гребными винтами, существенно изменены состав и компоновка энергетического оборудования.

Трехвальная ГЭУ переменно-постоянного тока стала первой отечественной установкой, выполненной по схеме генератор переменного тока — кремниевый выпрямитель — ГЭД. Такое построение ГЭУ обеспечило создание двухтурбинной установки с уменьшенными массогабаритными характеристиками и повышенными технико-экономическими показателями по сравнению с установками на постоянном токе. Применение генераторов переменного тока позволило создать паровую турбину с оптимальными энергетическими показателями, соединить генераторы с турбиной непосредственно, без редуктора, разместить два турбогенераторных агрегата в одном машинном отделении.

В состав ГЭУ входит следующее основное электрооборудование: два ТГ мощностью по 27 570 кВт при частоте вращения 3500 об/мин; шесть выпрямительных установок; три двухъякорных ГЭД постоянного тока мощностью по 2x8800 кВт; шесть нереверсивных тиристорных возбудителей ГЭД; три щита электродвижения, пульт электродвижения и три дистанционных поста управления.

Каждый ТГ состоит из турбины и соединенных с ней по одной оси трех синхронных генераторов мощностью по 9 МВт напряжением 780 В частотой 116,7 Гц. Генератор имеет одну обмотку возбуждения и две статорные обмотки.

Цепи главного тока всех трех ГЭД одинаковые и состоят из двух электрически не связанных между собой контуров. Носовые якоря ГЭД получают питание от правого турбогенератора, а кормовые от левого. Такое построение схемы обеспечивает работу каждой главной турбины одновременно на все три ГЭД. В случае выхода из строя одной турбины все три гребных винта будут иметь вращающий момент, что особенно важно в ледовых условиях для обеспечения сохранности лопастей винтов.

Передача электроэнергии от генераторов к ГЭД осуществлена при помощи шинопроводов. Применение шинопровода постоянного тока протяженностью 550 м осуществлено в проекте отечественного судостроения впервые.

Регулирование мощности и ограничения тока главной цепи в различных режимах производится воздействием на возбуждение генераторов и ГЭД с помощью обратных связей по току и напряжению.

Ледокол «Арктика» вступил в строй в 1974 г. и в автономном плавании достиг Северного полюса.

В 1985 и 1989 гг. закончилось строительство еще двух ледоколов по модернизированному проекту — «Россия» и «Советский Союз».

На судах зарубежной постройки ГЭУ начали развиваться с 1911 г. К концу второй мировой войны флот зарубежных стран насчитывал сотни судов с турбо- и дизель-электрическими установками. В основном в этот период суда строились с ГЭУ постоянного тока, в которых генераторы и ГЭД, как правило, соединялись по схеме генератор — двигатель.

Применялось в основном попеременно-последовательное соединение якорей генераторов и ГЭД. При нескольких ГЭД на судне в цепи главного тока использовались контуры по числу ГЭД или их якорей. На судах американской и канадской постройки традиционно применяется параллельное включение генераторов, причем при нескольких ГЭД на судне параллельно соединялись группы генераторов для каждого ГЭД. Например, трехвальная паротурбоэлектрическая ГЭУ канадского ледокола («Lous St. Laurent» 1969 г.) включает три ГЭД и три паровые турбины, каждая из которых через редуктор приводит во вращение три двухъякорных генератора (мощностью 3x2,2 МВт каждый). В схеме применено параллельное соединение каждых трех генераторов разных турбин, работающих на один ГЭД. При работе в средних и легких льдах используются два агрегата, в свободной воде — один, при этом обеспечиваются скорости судна 17 и 14,5 узла соответственно.

Особенностью ГЭУ ледокола финской постройки типа «Ермак» является применение среднеоборотных дизелей (СОД). ГЭУ состоит из девяти синхронных дизель-генераторов мощностью по 3,4 МВт напряжением 800 В с частотой вращения 380 об/мин и трех ГЭД [3 x (2x4,5 МВт)] напряжением 1,2 кВ с частотой вращения 105/180 об/мин.

Цепь главного тока обеспечивает включение любого из трех ДГ контура среднего ГЭД в контуры бортовых ГЭД; ДГ контуров бортовых ГЭД могут быть включены только в контур среднего.

В ГЭУ переменно-постоянного тока вместо генераторов постоянного тока применяют генераторы переменного тока в сочетании с неуправляемыми выпрямителями.

Первая установка была применена в 1965 г. на буксирах-толкачах типа («Clermont») (США), предназначенных для транспортировки барж с ракетами в системе каналов на р. Миссисипи. ГЭУ состоит из газовой турбины, приводящей во вращение два синхронных генератора мощностью по 334 кВт напряжением 445 В частотой 60 Гц; два ГЭД (работающих через понижающие редукторы с передаточным отношением 5,15:1, каждый на свой винт) мощностью 315 кВт напряжением 600 В частотой вращения 1200 об/мин; два неуправляемых выпрямителя.

Для ГЭД постоянного тока предельное значение напряжения на якорь всеми странами принято 1200 В. По данным фирм «Siemens» (ФРГ), «Stromberg») (Финляндия) максимальная мощность электродвигателя постоянного тока при указанном напряжении равна 10–15 МВт. В связи с ограниченной мощностью ГЭД постоянного тока и ростом мощности ГЭУ дальнейшее развитие происходило путем замены ГЭД постоянного тока на ГЭД переменного тока и выпрямителей на преобразователи частоты.

В ГЭУ переменного тока при больших мощностях нашли применение наряду с дизелями паровые и газовые турбины. В большинстве случаев применяются синхронные ГЭД. Однако в процессе развития указанных ГЭУ в качестве

ГЭД применялись практически все типы электрических машин переменного тока (кроме коллекторных).

Получили большое распространение ГЭУ с использованием преобразователей частоты и (или) винта регулируемого шага (ВРШ). На всех ГЭУ большинства судов применены синхронные ГЭД. Например, на канадском судне «Canberra» ГЭУ состоит из шести ТГ переменного тока мощностью по 22 МВт, напряжение синхронных генераторов 3 кВ при частоте 60 Гц и три двухъякорных синхронных ГЭД [3 x (2х21 МВт)], 110 об/мин. Оборудование преобразователя частоты для ГЭУ этого судна, если его выстроить в один ряд, займет до 90 м.

Синхронные ГЭД могут работать во всем диапазоне нагрузок с cos? = 1,0, что позволяет наилучшим образом использовать генераторы и преобразователи. Они также имеют значительный воздушный зазор между ротором и статором и, несмотря на необходимость установки специальных возбудителей, в большей степени отвечают жестким условиям работы судового привода.

С целью более эффективного использования оборудования ГЭУ, упрощения его обслуживания, повышения экономии топлива и увеличения грузовместимости судна развитие ГЭУ и ЭЭС пошло по пути объединения источников питания ГЭУ и общесудовых потребителей в единые ЭЭС (ЕЭЭС).

Построение ЕЭЭС выполнено при использовании преобразователей энергии различного типа:

механических (ВРШ);

электрических (преобразователи частоты и управляемые выпрямители);

комбинации механических и электрических преобразователей.

Как пример из большого числа построенных в 70-х годах судов с ЕЭЭС и ГЭД постоянного тока можно привести паром «Deutshland», построенный в ФРГ в 1972 г. В состав ЕЭЭС судна входят девять бесщеточных синхронных ДГ мощностью по 2100 кВ?А (часовая мощность 2400 кВ?А); четыре силовых блока управляемых выпрямителей мощностью по 5300 кВ?А, 1000 В переменного тока, 4400 А выпрямленного тока; два двухъякорных ГЭД постоянного тока мощностью по 2x3860 кВт (1200 В; 195/210 об/мин); два носовых асинхронных двигателя с фазным ротором подруливающих устройств мощностью по 750 кВт, 980 об/мин; два трансформатора по 2000 кВ?А. Питание тиристорных выпрямителей осуществляется от двойной системы сборных шин, соединяемых выключателями, а двух якорей одного ГЭД — от разных секций шин. Питание шин общесудовых потребителей осуществляется от двух трансформаторов 1000/380 В.

При повреждении шин питания судовых потребителей 380 В производится автоматический запуск аварийного ДГ мощностью 570 кВ?А, обеспечивающего питание секции ответственных потребителей.

Примером ЕЭЭС с ГЭУ переменного тока может быть канадский ледокол «Henry Larsen», построенный в 1987 г. Его ЕЭЭС состоит из трех генераторов мощностью 5 МВт (4,16 кВ, 720 об/мин) с дизельным приводом. Генераторы включены на шины ЕЭЭС, от которых через понижающие трансформаторы и преобразователь частоты получают питание два ГЭД. Мощность трансформаторов 2x4 MB?А, выходное напряжение 1,2 кВ, мощность синхронных ГЭД 6 МВт при частоте вращения 145/180 об/мин. Система векторного регулирования ГЭД с прямым цифровым управлением отпиранием тиристоров и оптической потенциальной развязкой силовых цепей и управления выполнена на базе четырех быстродействующих 16-разрядных микропроцессоров.

Система преобразователь частоты — синхронный ГЭД имеет механические характеристики, аналогичные характеристикам ГЭУ постоянного тока, но обладает повышенными надежностью, КПД и быстродействием.

Системы с ВРШ появились в начале 60-х годов в ФРГ, Италии, а затем в Японии и США. ГЭД в таких установках работает при постоянной частоте вращения в одном направлении. В ГЭУ с ВРШ нашли широкое применение высокооборотные дизель- и газотурбогенераторы. Как правило, в ГЭУ с ВРШ при мощностях на винте более 2 МВт применяются синхронные ГЭД, позволяющие повысить КПД и коэффициент мощности системы в целом. Такими ЕЭЭС оборудованы многие рыбопромысловые суда, паромы, земснаряды, буровые суда и платформы. Недостатком системы является сложный пуск синхронных ГЭД, производимый при пониженной частоте аналогично системам с частотным управлением. В ЕЭЭС с ГЭД мощностью менее 2 МВт применялись высокооборотные асинхронные короткозамкнутые ГЭД, включаемые обычно по два на ВРШ через редукторную передачу. Пуск их производится поочередно: сначала переключением со звезды на треугольник запускается один электродвигатель ГЭД, а затем прямым включением второй. Провал напряжения при пуске ГЭД не превышает 15%. Подобными системами оборудовано большинство рыбопромысловых судов Италии, Испании, ФРГ, Японии.

Недостатком асинхронных ГЭД является значительное потребление ими реактивной мощности и малый воздушный зазор, создающий трудности при монтаже и эксплуатации в ледовых условиях, поэтому они не получили распространения на ледоколах.

Освоение природных ресурсов Мирового океана привело к созданию судов специального назначения с потребителями электроэнергии большой мощности. В 80-е годы Финляндией, Японией, Швецией, Великобританией, США, Италией, Нидерландами, Норвегией и Францией построено большое количество полупогружных добывающих буровых установок и специальных многоцелевых платформ; добычных и крановых судов; ледоколов; судов снабжения; судов обслуживания и обеспечения подводно-технических работ и др. Многие из этих судов и установок оборудованы электроприводами технологических механизмов и систем позиционирования судна. Наиболее характерный диапазон мощностей ЕЭЭС до 50 МВт, номинальное напряжение от 3,3 до 10,5 кВ, частота 50 или 60 Гц. Непосредственно от шин ГРЩ высокого напряжения получают питание электроприводы движения и позиционирования, а также судовые потребители большой мощности (приводы технических комплексов, пожарные насосы и др.). Для питания общесудовых потребителей низкого напряжения установлены понижающие трансформаторы и (или) электромашинные преобразователи.

За короткий срок (немногим более 100 лет) развитие ЭЭС и ГЭУ прошло путь от применения на кораблях генераторов постоянного тока мощностью 1–3 кВт до автоматизированных высоковольтных ЕЭЭС переменного тока на судах мощностью в несколько десятков мегаватт.

Перспективы дальнейшего развития ЭЭС можно прогнозировать по следующим основным направлениям:

применение высокого напряжения;

внедрение сверхпроводниковых электрических машин;

увеличение единой мощности генераторов и нагрузки;

совершенствование структур ЭЭС и электрооборудования;

применение регулируемых электроприводов различных типов;

широкое применение вычислительных комплексов автоматизированного управления ЭЭС и ГЭУ, технического диагностирования, защиты и контроля.

Данный текст является ознакомительным фрагментом.