10.2. ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
10.2. ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
Электроизоляционные материалы в электротехнике выполняют незаменимые функции, и их наличие является необходимым условием функционирования каждого электротехнического устройства. Особенно велико значение электроизоляционных материалов в силовой электротехнике, где от их качества в решающей степени зависит срок службы и надежность большинства видов оборудования. Так, появление генератора трехфазного тока, трансформатора и асинхронного двигателя, а также развитие радиотехники и электроники потребовали электроизоляционных материалов, обладающих малыми диэлектрическими потерями при различных частотах и высоких напряжениях. Возникла потребность в обеспечении надежности работы машин и аппаратов в условиях высокой влажности и воздействия химических реагентов. Повысились рабочие температуры электроизоляционных материалов и ужесточились требования к их морозостойкости. Все это заставляло работать над повышением качества электрической изоляции, улучшением отдельных ее свойств, привело к созданию и применению синтетических диэлектриков, которые могли удовлетворять новым запросам электротехники [10.3].
Важнейшей характеристикой электроизоляционных материалов является нагревостойкость, которая показывает уровень и устойчивость электрических и механических характеристик изоляционных материалов при длительном нагреве и временных перегрузках.
Основные классы нагревостойкости характеризуются следующими предельными температурами:
Класс нагревостойкости — Предельная длительно допустимая рабочая температура, °С
А — 105
В — 130
С — 180
Эта характеристика также предрешает срок службы изоляции в агрегате, т.е. срок службы самого агрегата в условиях эксплуатации (рис. 10.1).
Особую роль среди разнообразия электроизоляционных материалов играют различные пластические материалы. Основой любой пластмассы, за исключением пластмассы на основе битумов и дегтей, является полимер — высокомолекулярное вещество, молекула которого состоит из многократно повторяющихся элементарных звеньев одинаковой структуры.
Появление первых электроизоляционных пластических масс было связано с использованием синтетических смол. Важнейшим изобретением в области электрической изоляции является синтез фенольно-формальдегидных смол [10.4].
Рис. 10.1. Зависимость времени жизни изоляции классов А, В и С от температуры
Немецкий ученый А. Байер в 1872 г. наблюдал, что при действии на бензол уксуснокислым метиленом и крепкой серной кислотой получаются сложные смолообразные вещества. Однако эти продукты не имели технически ценных свойств. В Германии в 1891 г. И. Клееберг, а в 1895 г. А. Сторн, развивая исследования А. Байера, применили вместо бензола фенол, а вместо уксуснокислого метилена — формальдегид. При этом оказалось, что реакция альдегида с фенолом протекает весьма активно, а получаемые смолы представляют собой твердые неплавкие продукты. Этим ученым не удалось получить смолы в растворимой и плавкой форме, а следовательно, сделать их технически ценными веществами.
А. Бакеланд и О. Лебах, развивая исследования своих предшественников, независимо друг от друга установили, что реакция фенола с формальдегидом может быть проведена и так, что получаются продукты реакции в растворимой и плавкой форме. В связи с тем, что реакция фенола с формальдегидом протекает с большим выделением теплоты, они предложили при развитии экзотермического процесса отводить ее, это и позволило остановить процесс конденсации на такой стадии, когда смола находится в растворимой форме. Ученые показали, что процесс конденсации фенола с формальдегидом может быть управляемым. Эти работы послужили основой для создания промышленного способа получения синтетических высокомолекулярных соединений из простых низкомолекулярных веществ. А. Бакеланд опубликовал свои исследования в 1908–1910 гг.
В 1904 г. A.M. Настюковым была открыта реакция конденсации нефти с формальдегидом, в результате которой получены неоформолитовые смолы. Исследования Е.И. Орлова (1910 г.) обогатили изоляционную технику новым пластическим материалом, названным карболитом, который был получен в результате конденсации фенолов с формальдегидом. В 1912 г. Г.С. Петровым были открыты каталитические свойства сульфонафтеновой кислоты при конденсации фенола с формальдегидом.
Организация производства фенольно-формальдегидных смол в 1915 г. явилась началом развития промышленности пластических масс в России. Особенно большое значение эти смолы имели для электротехники. Они явились новым интересным материалом, который превосходил по своим свойствам все известные до того времени натуральные и искусственные полимеры. В них гармонично представлено сочетание различных технически ценных свойств, характерных для твердого каучука, эбонита, кости и дерева. Важным преимуществом фенольно-формальдегидных смол по сравнению с известными в то время натуральными и искусственными полимерами являлись их высокие технологичность и нагревостойкость. Сочетание комплекса технически ценных свойств и сравнительно высоких электроизоляционных характеристик обеспечило на основе этих смол широкое развитие производства диэлектриков.
В результате конденсации формальдегида с фенолом, крезолами и ксиленолами промышленность получает различные смолы для производства пластических масс и слоистых диэлектриков и удовлетворяет разнообразные требования электротехники.
Исследовательские работы, проведенные в лабораториях СССР, США и Англии по синтезу полиэфирных смол с непредельными группами (акриловыми, матакриловыми, малеиновыми), показали способность этих полимеров переходить в неплавкое и нерастворимое состояние за счет двойных связей без применения давления. Это весьма важное свойство позволяет широко использовать эти продукты для изготовления с применением малых давлений слоистых диэлектриков: гетинакса, текстолита, стеклотекстолита. Кроме того, способность этих смол отвердевать в толстом слое при отсутствии кислорода дает возможность использовать их для изоляции трансформаторов тока. В этом случае совершенно по-новому решается конструкция трансформаторов тока. Полиэфир образует основу изоляции трансформаторов тока различных напряжений (3–35 кВ и выше) и одновременно выполняет функцию корпуса трансформатора. Появление полиэфирных и эпоксидных смол позволило создавать монолитную изоляцию трансформаторов и различных блоков питания, отказавшись от герметизации обмоток при помощи применявшегося ранее метода помещения обмотки в металлический корпус.
По мере развития электротехники номенклатура полиэфирных смол резко увеличивается.
Начиная с 30-х годов большое значение приобрели полимеры, полученные методом полимеризации (полистирол, поливинилхлорид, поливинилацетат, полиметилметакрилат и др.). 40-е годы характеризуются получением поли конденсационных полимеров: кремнийорганических, полиамидных, полиуретановых.
В 1940 г. начинается производство полиэтилена при давлении до 250 МПа — одного из наиболее распространенных в настоящее время полимеров. В 1955 г. К. Циглером (Россия) был разработан метод полимеризации этилена и при низком давлении, который в настоящее время получил весьма широкое распространение.
Вслед за этим на основе работ итальянского ученого В. Натта был разработан технологический процесс получения полипропилена.
Начиная с 50-х годов промышленностью выпускаются новые электроизоляционные материалы: стеклопластмассы, стеклолакоткани, синтетические лакоткани, стеклотканиты, фольгированные и асбестовые слоистые материалы, слюдопласты, материалы на основе кремнийорганических, эпоксидно-фенольных и эпоксидно-полиэфирных связующих и др.
Бурное развитие электротехнической промышленности, а в связи с этим и повышение рабочих напряжений оборудования потребовали проведения глубоких теоретических и экспериментальных исследований. Для этих целей на предприятиях, выпускающих электроизоляционные материалы, открылись специальные лаборатории.
Важную роль в разработке и изготовлении электроизоляционных материалов и в освобождении нашей страны от иностранной зависимости сыграли организованные Государственный экспериментальный электротехнический институт, затем переименованный во Всесоюзный электротехнический институт (ВЭИ), Всесоюзный научно-исследовательский институт электромеханики (ВНИИЭМ), Всесоюзный научно-исследовательский институт кабельной промышленности (ВНИИКП), СКБ синтетической изоляции, Всесоюзный научно-исследовательский институт стекловолокна (ВНИИстекловолокна), Всесоюзный научно-исследовательский институт бумаги (ВНИИБ), научно-исследовательские институты химической промышленности и Академии наук СССР, лаборатории заводов «Электроизолит», «Изолит», «Электросила», «Динамо» и др. [10.5, 10.6].
В исследованиях ВЭИ тех лет закладывались основы важнейших для электротехники научных направлений. Под руководством П.А. Флоренского проводились исследования электрофизических свойств электроизоляционных материалов. В 1924 г. П.А. Флоренским была издана монография «Диэлектрики и их техническое применение», в которой были обобщены материалы по изучению диэлектриков.
В ВЭИ проводились исследования, связанные с синтезом различных полимеров: полиэфиров, полиуретанов, эпоксидных, фенолформальдегидных и карбамидных смол, поливинилацеталей, полиамидов, полиорганосилоксанов, полиорганометаллосилоксанов и др. В ВЭИ и ряде других организаций (ВНИИЭМ, ВНИИКП) разрабатывались различные электроизоляционные лаки, компаунды и материалы на основе новых полимеров.
Особого внимания заслуживают работы по изысканию новых путей синтеза полимерных кремнийорганических соединений, связанных с фундаментальными исследованиями механизма образования этих соединений. Эти теоретические исследования были начаты в ВЭИ под руководством К.А. Андрианова в 1935 г. В то время в мире еще не были известны высокополимерные соединения, содержащие молекулы, построенные из силоксанных группировок атомов и обладающие хорошими технологическими свойствами (гибкостью, растворимостью, способностью полимеризоваться и т.д.), характерными для органических смол.
Развитие электроизоляционных материалов и электроизоляционной техники можно условно разбить на несколько этапов.
Первым этапом (1920–1928 гг.), способствовавшим развитию электроизоляционной техники, явились систематические электрофизические исследования диэлектриков, которые были начаты в лабораториях Ленинградского физико-технического института.
Руководителем института А.Ф. Иоффе было открыто явление высоковольтной поляризации, имеющее большое значение для понимания процессов, происходящих в изоляции электрооборудования. Сотрудники этого института Н.Н. Семенов и В.В. Фок создали оригинальные теории пробоя диэлектриков. Тогда же, в конце 30-х годов, проводили испытания природы диэлектрических потерь, электропроводности при больших напряженностях электрического поля И.В. Курчатов и А.П. Александров. Эти исследования, положившие начало новой науке — физике диэлектриков, заслужили самую высокую оценку как в нашей стране, так и за рубежом. В дальнейшем работы в области физики диэлектриков были продолжены в Физическом институте АН СССР, в Томском и Ленинградском политехнических институтах, в ВЭИ, МЭИ, а также заводских лабораториях крупных электротехнических заводов (ХЭМЗ, «Электросила», «Динамо», Московский электрозавод и др.). Несколько позднее (в 30-е годы) получила развитие химия диэлектриков.
Вторым этапом, способствовавшим развитию электроизоляционной техники (1928–1935 гг.), явились работы по созданию более совершенных электроизоляционных материалов, проводившиеся в ВЭИ, а также в лабораториях заводов ХЭМЗ, «Электросила», «Динамо», Московского электрозавода, завода им. Лепсе, «Изолит».
В результате этих исследований электротехническая промышленность получила новые электроизоляционные материалы: глифталевые смолы и лаки, битумно-масляные и масляно-смоляные пропиточные, клеящие и покровные лаки, битумные пропитывающие компаунды, покровные эмали, синтетические жидкости, большую номенклатуру слюдяных материалов, слоистые пластики, разные виды электроизоляционных бумаг и картонов, намотанные бумажно-бакелитовые изделия, светлые и черные лакоткани, асбоцемент непропитанный и пропитанный и др.
Третьим этапом развития электроизоляционной техники явилось создание в 1932–1940 гг. специальных видов изоляции — влаго-, водо- и химостойкой с повышенной теплопроводностью и нагревостойкостью. Сочетание стекловолокнистых материалов, щипаной слюды и модифицированных глифталевых электроизоляционных лаков позволило получить изоляцию электрических машин с повышенной нагревостойкостью.
Качественный скачок в повышении нагревостойкости изоляции стал возможен в результате разработки гаммы высоконагревостойких электроизоляционных материалов на основе кремнийорганических полимеров, созданных под руководством К.А. Андрианова.
В 1948 г. под его руководством в ВЭИ были начаты систематические исследования нагревостойкости кремнийорганической изоляции, синтетических пленок и других полимерных диэлектриков. В результате было доказано наличие связи между структурой диэлектриков и их нагревостойкостью, а также установлены количественные зависимости срока службы изоляции электродвигателей от температуры для кремний-органических и других полимерных диэлектриков. Следует также отметить систематические исследования связи между строением полимерных диэлектриков и их электрофизическими и механическими свойствами, проводимые в ВЭИ с конца сороковых годов.
Возросший спрос на слюдяные материалы для изоляции обмоток турбо- и гидрогенераторов, высоковольтных машин, тяговых, шахтных, металлургических, морских и других электродвигателей с рабочей температурой 130–180 °С увеличивал расход дорогостоящей и остродефицитной щипаной слюды. В связи с этим возникла необходимость более рационального использования добываемых слюд, а также замены слюдяных материалов менее дефицитными.
В 1948–1951 гг. развитие электроизоляционной техники шло главным образом по пути значительного сокращения потребления слюд высоких номеров и щипаных из очищенных слюд. Исследования, проведенные в ВЭИ и на заводе «Электросила», очищенных и колотых слюд позволили значительно сократить удельный расход остродефицитного сырья.
Современный этап развития электроизоляционной техники характеризуется разработкой и применением термореактивных смол для изоляции электротехнического оборудования. Создана и успешно внедряется термореактивная изоляция в турбо- и гидрогенераторах, синхронных компенсаторах и высоковольтных машинах; литая изоляция в измерительных трансформаторах, электробурах, тяговых и других электродвигателях, а также в высоковольтных аппаратах.
В ВЭИ осуществлен синтез полиорганометаллосилоксанов, что дало возможность вводить в цепь полиорганосилоксанов алюминий, титан, олово, кобальт, никель. Наибольшее развитие получили полимеры, содержащие в главной цепи алюминий. Кремнийорганические лаки находят применение в качестве добавок для изготовления нагревостойких лаков и композиционных пластических масс, а также для повышения влагостойкости фенолформальдегидных смол, используемых в производстве гетинакса и стеклотекстолита.
Одновременно с разработкой методов синтеза полиорганосилоксанов в довоенные годы начались исследования в области различных высокополимерных соединений, являющихся основными веществами для изготовления лаков, компаундов, пластических масс, лакотканей, слоистых пластиков. В 50-е годы в ВЭИ были проведены работы по синтезу 100-процентных маслорастворимых смол (гексилфенолформальдегидных, оксидифенолформальдегидных), обладающих высокой влагостойкостью, стойкостью к кислотам и слабым растворам щелочей, т.е. свойствами, необходимыми для создания высококачественных электроизоляционных пропиточных лаков. Синтезированы также новые эластичные растворимые в маслах анилиноформальдегидные смолы для изготовления лаков, стойких к щелочам, щелочным эмульсиям, бензину, керосину, хорошо совмещающиеся с полихлорвинилом и улучшающие его адгезию к металлам.
В конце 30-х — начале 40-х годов одним из важнейших направлений в области полимеров являлся синтез полиэфирных смол, главным образом алкидных, на основе продуктов поликонденсации фталевого ангидрида и глицерина.
Глифталевые смолы широко применяются в изоляционном производстве, и особенно для изготовления изоляционных лаков. Были синтезированы немодифицированные глифталевые смолы, а также глифталевые смолы, модифицированные жирными кислотами, маслами и продуктами окисления парафина. Наиболее широко распространены полиэфирные смолы, представляющие собой продукты поликонденсации многоосновных кислот и многоатомных спиртов. Общие свойства полиэфирных смол — высокие электрические характеристики, хорошая адгезия к металлам и различным изоляционным материалам, значительная стойкость к действию масел и различных растворителей. Нагревостойкость полиэфирных смол зависит от кислот и спиртов, примененных для их синтеза.
В середине 50-х годов отечественной промышленностью был создан ряд полимеров, в том числе полиуретаны и эпоксидные смолы. Полиуретаны обладают высокой химо-, масло- и влагостойкостью, прочностью на истирание, эластичностью, адгезией к металлам и хорошими электрическими свойствами. Полимеры на основе полиуретанов используются при изготовлении лаков для эмальпроводов, заливочных компаундов и лаков для стеклолакотканей.
Для изоляции различных электротехнических изделий широко применяются эпоксидные смолы. Благодаря высокой адгезии к большинству электроизоляционных материалов и к металлам эпоксидные смолы являются хорошими клеями. Они применяются для изготовления стеклопластиков, отличающихся большой механической прочностью, и в качестве связующего в слюдяных изоляционных материалах. Способность эпоксидных смол отверждаться в толстых слоях без давления с малой усадкой позволила широко использовать их для изготовления литой изоляции.
Для заливки трансформаторов тока и напряжения, предназначенных для работы при низких температурах, разработаны компаунды на основе эпоксидных смол с отвердителями ангидридного типа (малеиновый ангидрид, смесь малеинового и фталевого ангидридов), а также пластифицированные полиэфирами компаунды. Введение в эпоксидную смолу до 20% полиэфира улучшает физические свойства полимера, практически не снижая электрических свойств компаунда. Эпоксидно-полиэфирные компаунды К-168 и К-293 и другие применяются для защиты полупроводниковых приборов и схем от влаги.
Среди электроизоляционных лаков различного назначения особое место занимают разработанные в ВЭИ под руководством К.А. Андрианова в начале 60-х годов композиции эпоксидных смол с полиэфирами и полиорганосилоксанами, позволившие создать комплекс электроизоляционных материалов высокой нагревостойкости. К ним относятся: пропиточный лак ПЭ-933, лак ПЭ-942 для стеклоткани и стекло лакочулок, лак ПЭ-948 для гибких слюдяных материалов, смола ТФП-18 для формовочного и коллекторного миканитов, лаки ПЭ-935 и ПЭ-936 для гибких слюдинитовых материалов, эмаль ЭП-9], стеклолакоткань ЛСП, а также компаунд ЭК. Эта группа лаков и материалов рекомендуется для изоляции кранового, тягового электрооборудования и электродвигателей прокатных станов.
Большой интерес представляют органические полимеры с ароматическими и гетероциклами в основной цепи, обладающие высокой нагревостойкостью. К таким полимерам относятся полиимиды — продукты взаимодействия ангидридов поликарбоновых кислот (пиромеллитовой, тримеллитовой) и ароматических диаминов (диаминодифенилоксид, диаминодифенилсульфид и др.), полимеры на основе ароматических амидов (типа фенилона), а также полиоксидифенилы. Полиимиды наиболее огнестойкие среди органических полимеров, отличаются хорошими электроизоляционными и механическими свойствами при температурах 250–350 °С, чрезвычайно устойчивы к воздействию атмосферы, радиации и химических реактивов. Полиоксидифенилы обладают хорошей цементирующей способностью при температуре от 120 до 300 °С, что свидетельствует об их низкой термопластичности и высокой твердости лаковых пленок. Эти свойства позволяют использовать полиоксидифенилы для получения пропиточных лаков и бандажных лент.
В настоящее время в ВЭИ разрабатываются новые электроизоляционные лаки и материалы на основе полиимидов (эмаль-лаки для эмаль-проводов, пропиточные лаки, стеклолакоткани). Ведутся работы по созданию полимеров на основе оксидифенила.
Разработаны и проходят стадию технологического опробования цианэтилированные целлюлозные материалы, а также ацетилированные бумаги. По сравнению с аналогичными материалами, изготовленными на обычной целлюлозе, нагревостойкость цианэтилированных целлюлозных материалов приблизительно на 20 °С выше, водопоглощение ацетилированных целлюлозных бумаг примерно на 50% ниже, удельное сопротивление на два-четыре порядка выше. Снижается также зависимость сопротивления от температуры. В ВЭИ созданы стеклянные бумаги, изготовляемые сухим формованием и методом растяжки срезов стекловолокон. Новые материалы обладают высокой нагревостойкостью, хорошими электроизоляционными свойствами, высокой прочностью на разрыв. Качество асбестовых бумаг, выпускаемых промышленностью, не отвечает основным требованиям, предъявляемым к электроизоляционным материалам. В связи с этим ВЭИ разработана технология изготовления тонких асбестовых бумаг на основе хризотилового асбеста с повышенными электрическими характеристиками. Нагревостойкость различных электроизоляционных материалов, в которых применены эти бумаги, 400 °С.
В электротехнике (в трансформаторостроении, кабельной технике) широко применяются нефтяные масла. Однако они имеют существенный недостаток — способны окисляться при повышенных температурах, в результате чего образуются осадки, изменяющие физико-химические и электрические характеристики масел. Кроме того, нефтяные масла горючи и взрывоопасны, имеют низкую диэлектрическую проницаемость. Все это обусловило необходимость форсирования работ, связанных с получением синтетических жидких диэлектриков. В ВЭИ, ВНИИЭМ и ряде других организаций интенсивно ведутся работы по синтезу электроизоляционных жидкостей различного химического состава (хлор- и фторсодержащие углеводороды, жидкие полиизобутилены, кремнийорганические жидкости).
Наибольший интерес для электротехнической промышленности представляют жидкие хлордифенилы — смеси индивидуальных хлорпроизводных дифенила. Хлордифенилы негорючи, взрывобезопасны, имеют высокие электрические характеристики и термически стабильны. К таким электроизоляционным материалам относятся: совол, хлордифенил и совтол, производство которых уже освоено промышленностью.
Для заполнения малогабаритных трансформаторов, рассчитанных на работу при высоких температурах, применяются фторорганические жидкости, имеющие наряду с высокими электрическими характеристиками хорошие охлаждающие свойства. Для пропитки силовых кабелей широко используется масло октол (смесь полимеров изобутилена), обладающее высокой термической стабильностью и стабильностью в электрическом поле. Для силовых высоковольтных трансформаторов создан специальный целлюлозный картон.
В 50-е годы разработаны жидкие кремнийорганические диэлектрики, которые отличаются высокой нагревостойкостью, имеют низкую температуру застывания, малый температурный коэффициент вязкости, хорошие электрические свойства в широком интервале частот и температур, химически инертны. Отечественной промышленностью освоен выпуск нескольких разновидностей полиорганосилоксановых жидкостей. Наибольший интерес представляют полиметил- и полиэтилсилоксановые жидкости с высокими температурами кипения.
Наиболее важным из числа газообразных электроизоляционных материалов является воздух. В силу своей всеобщей распространенности воздух часто входит в состав электротехнических установок и играет в них роль электроизоляционного материала дополнительно к жидким и твердым электротехническим материалам. Однако электрическая прочность воздуха весьма невелика [10.6].
В 1941–1942 гг. Б.М. Гохберг опубликовал результаты исследования электрофизических характеристик гексафторида серы. Это соединение оказалось наиболее перспективным для изоляции электроустановок и было названо Б.М. Гохбергом элегазом. Само название «элегаз» указывает на то, что это газ, предназначенный для целей электротехники.
Современное развитие электротехники идет в направлении повышения напряжений, роста мощностей и увеличения частот. К электротехническим материалам, применяемым в электро- и радиотехнике, предъявляются более высокие, чем прежде, требования.
Повышение уровня характеристик может быть достигнуто как путем усовершенствования известных материалов, так и посредством синтеза новых диэлектриков. Так, для высокочастотной техники может представить интерес синтез керамических материалов с малыми потерями и высокой добротностью. В области электроизоляционных материалов, предназначенных для работы при промышленной частоте, очень важно повысить их нагрево- и влагостойкость. Большие перспективы в этом отношении имеют электроизоляционные композиции на основе кремний-органических полимеров, эпоксидных и полиуретановых смол.
Данный текст является ознакомительным фрагментом.