11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ
11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ
Силовая электроника была и остается наиболее энергоемким направлением развития промышленной электроники. Функции этого направления — регулируемое преобразование электрической энергии. Важнейшие виды преобразования энергии: выпрямление переменного тока, регулирование выпрямленного напряжения (тока), инвертирование постоянного тока, преобразование частоты, преобразование числа фаз. Основные задачи, которые решала и решает силовая электроника, — создание элементной и аппаратной базы; развитие схемотехники; создание теории вентильных цепей, методов анализа и проектирования преобразователей электроэнергии; развитие методов и технических средств управления преобразователями электроэнергии. Решение этих задач и составляет основные этапы развития и становления современной силовой электроники — важнейшей составной части промышленной электроники.
Эффект выпрямления переменного тока с использованием электрической дуги впервые был обнаружен и исследован В.Ф. Миткевичем в начале XX в. Им же были разработаны получившие широкое распространение двухполупериодная и трехфазная нулевая схемы выпрямления (1901 г.). Особенности работы схем при различных нагрузках исследовались А.Л. Гершуном (1901 г.), а одно- и двухполупериодное выпрямление с применением электронных вентилей — кенотронов — Н.Д. Папалекси (1911 г.) [11.1, 11.2].
Мощные выпрямители впервые были созданы на основе дугового разряда в парах ртути с холодным катодом. Патент на первый прибор был выдан в США Купер-Хюиту в 1901 г. Затем в течение 20 лет произошел скачок в преобразовании тока в промышленных масштабах. Во многих странах, в том числе и в СССР, быстро развивалась теория газового разряда, создавались конструкции мощных ртутных вентилей, разрабатывались специальные виды трансформаторов, защитной и коммутационной аппаратуры. Нашими учеными и инженерами в короткий срок были созданы мощные преобразовательные агрегаты, не уступавшие зарубежным. Без этих агрегатов было невозможно промышленное производство стратегических материалов (алюминия, цинка, титана), не могли работать прокатные станы, не могла осуществляться электрификация городского и магистрального транспорта. Большие государственные вложения в развитие силовой электроники затрагивали сферы науки, производства и образования.
Исследования процессов в дуговом разряде, определение свойств материалов, способных работать в условиях высокого вакуума и в газоразрядной плазме, разработка конструкции силовых вентилей — таковы важнейшие вопросы, которые решались в лабораториях заводов «Электросила», «Светлана» и в электровакуумных лабораториях ВЭИ.
Преобразование тока с применением газоразрядных (ионных) приборов оказалось наукоемкой областью электротехники. Создание мощных приборов, способных работать в широком диапазоне токов, при различных температурах окружающей среды стало возможным лишь на основе глубоких представлений о физических процессах. Среди советских ученых, чей вклад в исследования физики газового разряда особенно заметен, назовем В.А. Фабриканта, исследовавшего оптические свойства разряда [11.6], В.Л. Грановского, изучавшего процессы деионизации разрядного промежутка в ионных приборах, Б.Н. Клярфельда, занимавшегося свойства-
ми положительного столба разряда в приборах с накаленным и ртутным катодами. Их работы, впервые опубликованные в 1940 г., получили широкое признание во всем мире [11.5–11.8]. Автор ряда крупных работ в области ионных приборов и силовой схемотехники И.Л. Каганов обеспечил выпуск специалистов в области газового разряда, электротехники и импульсной техники [11.15].
Проектированием преобразовательных подстанций занимался проектный институт «Тяжпромэлектропроект». Важную роль сыграли работы Г. А. Ривкина — сотрудника этого института.
История развития преобразовательной техники в нашей стране начинается с создания первых стеклянных ртутных вентилей с ртутным катодом в Нижегородской лаборатории В.П. Вологдина в 1921 г. Стеклянные вентили выпускались для выпрямления напряжения промышленной сети; специальные конструкции высоковольтных вентилей использовались для питания радиопередающих устройств. Ртутные вентили зарекомендовали себя сравнительно надежными и долговечными. Конструкция ртутного вентиля подразумевала использование схем с общей нулевой точкой. Соединение трансформаторов в трехфазных схемах выполнялось по схеме звезда — звезда или звезда — зигзаг при больших мощностях [11.11].
Каскадные схемы выпрямительных агрегатов с последовательным включением отдельных изолированных выпрямителей, предложенные в 1921 г. В.П. Вологдиным, позволили разработать выпрямители высокого напряжения. На основе каскадных схем в 1926–1927 гг. был выполнен ртутно-выпрямительный агрегат мощностью 120 кВт и напряжением 12 кВ для питания радиостанций.
Ограниченные токи и напряжения стеклянного ртутного вентиля заставили искать пути увеличения единичной мощности вентиля. Важным этапом на этом пути стало создание в 1926 г. на ленинградском заводе «Электросила» металлического многоанодного ртутного вентиля РВ-5 на напряжение 600 В и ток 500 А (рис. 11.1). Это был разборный агрегат с непрерывно действующей двухступенчатой вакуумной откачной системой и с водяным охлаждением. Выпрямитель был оснащен электромагнитным устройством поджига дуги. На основе РВ-5 была создана серия агрегатов, которая позволила довести выпрямленный ток до 1,6–1,8 кА при напряжении 825 В. Это позволило отказаться от электромашинных преобразователей для питания тяговых сетей уже на первых линиях метрополитена в Москве. Дальнейшее повышение вентильной прочности дало возможность перевести на ртутно-выпрямительные агрегаты питание пригородных электропоездов напряжением 3,3 кВ [11.14–11.16].
Рис. 11.1. Ртутно-выпрямительиый шестианодный агрегат с водяным охлаждением на ток 500 А и напряжение 600 В (1926 г.)
В 1923 г. А.Н. Ларионовым была предложена трехфазная мостовая выпрямительная схема, которая стала самой популярной в эпоху полупроводниковых силовых преобразователей [11.24]. С ростом мощности агрегатов стали актуальными вопросы влияния преобразователей на питающую сеть. В дополнение к известному показателю энергетической эффективности — углу сдвига добавились такие, как коэффициент искажений формы потребляемого тока и фазовая асимметрия. Работа управляемого выпрямителя сопровождается ухудшением косинуса угла сдвига и коэффициента искажений. Влияние этих факторов могло быть улучшено лишь на основе анализа энергообмена между питающей сетью, нагрузкой и всеми реактивными элементами, входящими в преобразовательную систему. Вопросы такого энергообмена в нашей стране были изучены О.А. Маевским, Ф.И. Бутаевым, Е.Л. Эттингером. Были предложены схемы, в которых с целью повышения коэффициента мощности сочетались фазовые методы регулирования напряжения (изменением угла регулирования) с методами переключения питающего напряжения, применения нулевых вентилей и использованием так называемого несимметричного управления.
Дальнейшее развитие преобразовательной техники показало перспективность и актуальность этих исследований. В послевоенные годы доля преобразовательной нагрузки в энергетическом балансе и ее влияние на работу энергосистемы возросли. Более жесткие требования национальных стандартов на качество энергии стало возможно выполнять лишь на основе схем с принудительной коммутацией и на основе схем с двухоперационными силовыми ключами. Помимо преобразователей, ведомых сетью, возросла роль автономных преобразователей. Среди них следует выделить две группы: автономные преобразователи для индукционного нагрева и трехфазные автономные инверторы для электропривода.
Инверторы с повышенной частотой (сотни — тысячи герц) использовались в качестве источников питания для мощных (сотни киловатт) установок индукционного нагрева либо в качестве промежуточного звена для преобразователей постоянного напряжения. Они выполнялись по схемам с параллельной, последовательной или комбинированной конденсаторной коммутацией. Принципиальной особенностью этих инверторов является необходимый для преобразователей на однооперационных вентилях опережающий характер тока. Первым подобную схему предложил в 1938 г. немецкий ученый В. Остендорф (W. Ostendorf), в последующие годы автономные инверторы на повышенные частоты в нашей стране исследовались И.Л. Кагановым, А.Е. Слухоцким, А.С. Васильевым.
Инверторы для электропривода интенсивно разрабатывались в 50-е годы. В эти годы в электроприводе стали очевидны как достоинства асинхронных двигателей, так и их принципиальное ограничение — необходимость изменения частоты питающей сети для регулирования скорости. В связи с этим большие надежды возлагались на трехфазные автономные инверторы с регулируемыми частотой и напряжением. Для асинхронного привода с глубоким регулированием характерно требование хорошего гармонического состава выходного напряжения. Принципы формирования трехфазного синусоидального напряжения методами широтно-импульсной модуляции потребовали разработки новых классов преобразователей, основанных на принудительной коммутации однооперационных вентилей.
Данный текст является ознакомительным фрагментом.