11.3.4. МОЩНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИНДУКЦИОННОГО НАГРЕВА

11.3.4. МОЩНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИНДУКЦИОННОГО НАГРЕВА

Индукционный нагрев металлов (слитков, изделий) обусловлен выделением энергии в металле при протекании в нем токов, наведенных магнитной компонентой электромагнитного поля. Для создания поля необходим источник переменного напряжения и индуктор. Особенностью индукционного нагрева является зависимость глубины проникновения поля в металл от частоты тока и свойств металла. Поэтому при необходимости прогрева по всей толще массивных титановых изделий используются токи пониженной частоты (несколько герц — 50 Гц); для поверхностной закалки изделий (валков прокатных станов, подшипниковых колец, зубьев шестерен) используется повышенная частота (сотни герц — несколько килогерц); для обработки тонких листовых материалов требуются уже радиочастоты (сотни килогерц). Источники переменного напряжения в зависимости от массы обрабатываемого материала могут иметь мощности от нескольких ватт (распыление газопоглотителя в вакуумных лампах) до тысяч киловатт (плавка в особо чистых условиях без риска загрязнения).

Источники переменного напряжения, перекрывающие названный диапазон частот и мощностей, относятся к различным классам преобразователей.

Самые мощные установки для низкочастотного индукционного нагрева работают на частоте 50 Гц. Они наиболее просты функционально, не требуют преобразовательных устройств, так как работают от промышленной сети, и нуждаются лишь в средствах пуска, защиты и регулирования мощности.

Мощные низкочастотные преобразователи для нагрева массивных слитков и поковок работают на частотах от единиц до десятков герц. Они выполняются на основе тиристорных непосредственных преобразователей частоты по трехфазно-однофазной схеме с циклическим изменением угла регулирования и раздельным управлением группами вентилей для формирования положительной и отрицательной полуволн тока. Низкие частоты обусловливают воздействие на большие массы металла, а следовательно, требуют больших мощностей (до тысяч киловатт).

В области повышенных частот (от 500 Гц до 1–2 кГц) использовались преобразователи на игнитронах и экситронах производства ВЭИ с сеточным управлением (мощностью до 1000 кВт). Для улучшения условий работы преобразовательного оборудования практиковалось объединение нескольких преобразователей в так называемую преобразовательную станцию, которая в меньшей степени была подвержена воздействию технологической неравномерности энергии, потребляемой несколькими индукторами. После освоения промышленного выпуска тиристоров с улучшенными свойствами, в частности Таллиннского электротехнического завода, высокочастотные преобразователи выпускались на большие мощности по классическим схемам инверторов тока, а также по схемам с удвоением выходной частоты (рис. 11.10).

Рис. 11.10. Схемы силовых генераторов на тиратронах на частоту до 2500 Гц с питанием от сети 50 Гц (1960 г.)

а — с общим катодом; б — с изолированными катодами 

Преобразователи повышенной частоты разрабатывались в лаборатории высокочастотной электротехники ЛЭТИ — Ленинградского электротехнического института и во ВНИИТВЧ — Институте токов высокой частоты им. В.В. Вологдина. Мощные преобразователи выполнялись как по классическим схемам инверторов тока, так и по схемам с умножением частоты. Разработчики шли двумя путями при решении вопроса об увеличении мощности: использование параллельного и последовательного соединения вентилей для повышения параметров эквивалентного вентиля, а также разработка схем с возможностью параллельной работы преобразователей, имеющих общую нагрузку. Разработка мощных отечественных преобразователей повышенной частоты выполнена А.С. Васильевым, А.Е. Слухоцким. А.В. Донским и Г.В. Ивенским [11.31, 11.32].

В области высоких частот (десятки килогерц и выше) получение значительных мощностей (десятки и сотни киловатт) было возможно только при использовании ламповых генераторов. На частотах 60–400 кГц и мощности до 100 кВт генераторы выполнялись по одной из разновидностей трехточечных схем. Для улучшения энергетических показателей лампы работали в режиме с сеточными токами в классе С. Проблема расчета и наладки таких генераторов усложнялась тем, что нагрузка существенно изменялась в ходе процесса разогрева деталей, что вызывало изменение параметров контура.

Термообработка полупроводниковых материалов, в частности плавка кремния и нагрев диэлектриков, осуществляется на частотах единицы — десятки мегагерц, а единичная мощность генераторов составляет единицы — десятки киловатт, поэтому эта область применения до настоящего времени остается за ламповыми генераторами.

Данный текст является ознакомительным фрагментом.