Фрагмент тренинга по курсу «Междисциплинарные исследования»

Фрагмент тренинга по курсу «Междисциплинарные исследования»

Д. Гаврилов (читает). «Вода оказывает серьёзное влияние на качество нефтепродуктов. Присутствие пластовой воды в нефти существенно удорожает её транспортировку по трубопроводам и переработку. Возрастание транспортных расходов обусловлено не только перекачкой балластной воды, но и увеличением вязкости нефти, образующей с водой эмульсию. Существующие физические методы диагностики воды (в частности, диэлектрической проницаемости) не отвечают требованиям химической технологии переработки нефти и нефтепродуктов. Для количественного определения содержания воды в нефти известен и широко применяется в настоящее время метод, основанный на измерении объёма воды, испарившейся из определённого объёма исследуемой обводненной пробы нефтепродукта при прогреве её до температуры кипения в присутствии специального растворителя. Метод трудоёмкий, длительный, недостаточно точный, плохо воспроизводимый, требует при малых содержаниях воды большого количества исследуемой пробы. Для определения содержания воды в жидких углеводородах применяется несколько типов измерительных устройств, из которых наиболее широкое распространение получили диэлькометрические влагомеры. Действие их основано на использовании зависимости диэлектрической проницаемости среды от соотношения содержаний в ней воды и нефти…» и так далее.

Предложите нам классический, чисто химический, надёжный и простой способ количественного определения воды в нефти и нефтепродуктах.

Участник тренинга. Титрованием.

Д. Гаврилов. Титрованием чего?

Участник тренинга. Анализируемой пробы анодным раствором по методу Карла-Фишера. С титрованием этим даже ребёнок справится.

Д. Гаврилов. То есть у вас должен быть минимум в наличии ядовитый метанол, пиридин, не считая самого многокомпонентного реактива Фишера[75], а также и прибор — кулонометр (или потенциометр) и ячейка (лучше сразу титратор). Не слишком ли громоздко? За последние 75 лет, с момента создания Фишером его реактива, могли придумать что-нибудь более простое. В формулировке задачи, в самих условиях, всегда содержится подсказка.

Вы опираетесь на конкретный опыт, специальное знание, готовое и известное вам решение, но не хотите отступить на шаг назад и выдумать своё, собственное и оригинальное.

Другой участник тренинга. Возможно, метод состоит в применении электрического тока?

Д. Гаврилов. По сути дела и предыдущее предложение и сводится к построению графика изменения электропроводимости раствора. Но для решения вводится много лишних сущностей со стороны, кои не стоит умножать согласно известному принципу. А если судить не по выпавшему в осадок йоду, а по выделенному летучему газу?

Участник тренинга. Но ведь уже сказано, что другой «метод основан на измерении объёма испарившейся воды».

Д. Гаврилов. Но я ничего об испарившейся воде не говорил, а говорил, что если что-то оседает и выпадает, то что-то может улетучиваться.

Участник тренинга. Но ведь нам надо количественно определить воду?

Д. Гаврилов. Да.

Участник тренинга. Значит, количество, как вы говорите, выделенного каким-то образом газа из нефти должно быть пропорционально содержанию воды?

Другой участник тренинга. Судить о содержании воды в пластовой нефти по объёму газа? Например, ступенчатое разгазирование? Если это имеется в виду — сразу нет, потому что в пластовой нефти газосодержание очень варьируется, и свойства газа тоже. Немного оффтопа: остаточную водонасыщенность/нефтенасыщенность керна замеряют с помощью капиллярометрии или центрифугой. А можно ли смесь нефти с водой прогнать на центрифуге при разной скорости, присоединив к держателям для пробирок с жидкостью (стальных) капилляры сбоку и к ним ёмкости? А ёмкости сделать высокими и узкими, чтобы вытекшая поначалу жидкость осталась снизу. Жидкости разной плотности должны разделиться при определённой скорости, и поначалу, допустим, нефть стечет через капилляр, потом вода. Это предположение, не уверена в физичности на этапе разделения. Забыла про вязкость, за счёт вязкости тоже должно быть какое-то разделение при вращении (неньютоновские жидкости).

Д. Гаврилов : Коллеги, но зачем выделять газ из нефти? Выделите его, образно говоря, «из воды», которая в пробе нефти содержится. У вас есть только ведро нефти, например. Принесли в лабораторию. Как определить в нём содержание воды химическим путём по газу? Наверное, надо как-то подействовать на нефть, то есть воду в ней… чтобы количество молей воды было прямо пропорционально числу молей выделившегося в ходе реакции газа. Какие вещества реагируют с водой в органическом растворе с выделением газа? Вода так уж точно химическое соединение из числа самых распространённых, о чём все забывают. И вода тоже вступает в химические реакции!

Участник тренинга. То есть надо подобрать такой реагент, который будет взаимодействовать с водой, оставаясь инертным к нефти, с выделением газа? Возможно, карбид кальция используется, образуя ацетилен?

Другой участник тренинга. В ведре нефти в поверхностных условиях растворено много газа, он может быть самого различного состава. Когда в нефти+воде будет происходить реакция, будет выделяться либо поглощаться тепло, в этих условиях из системы дополнительно может выделиться газ (и выделится!). Уже тот, который был в ведре. Как его зафиксировать отдельно от того, который выделился бы из полностью дегазированной смеси нефть+вода? Непредставительный результат и взрывоопасно.

Участник тренинга. Не беда. Если брать реакцию с карбидом, то тепло можно отводить. Газ ацетилен не живёт же в нефти, он выделится и всё. Приведите мне пример побочной реакции, в которой выйдет дополнительный газ, который испортит наши расчёты?

Д. Гаврилов. Если содержание воды велико, относительно органической части, возражение в части существенного теплового эффекта можно было принять. Но существенным возражением является неплохая растворимость ацетилена в любой органике. Тем не менее, есть такой газ и такой реагент, которые помогут справиться с водою в органическом растворе. Парадоксально, но вода получается именно из этого газа!

Участник тренинга. Значит, надо выделить либо кислород, либо водород? Не будет ли кислород доокислять органику? Наверное, водород куда более инертен.

Д. Гаврилов. В каких химических реакциях из воды выделяется водород?

Участник тренинга. Эврика! Например, бросим «в ведро» гидрид кальция, объём выделившегося водорода можно измерить с высокой точностью, и он будет пропорционален массовому содержанию воды в пробе:

СаН2+2Н2O = Ca(OH)2 + 2H2

Гидриды не растворяются (без разложения) ни в одном из обычных органических растворителей. А вот с водой (даже её следами) они энергично реагируют, поэтому традиционно используются в лабораторной практике в качестве осушителей.

Д. Гаврилов. Поздравляю, вы повторили идею инженера И. С. Лидермана и его соавторов, опубликованную в бюллетене «Открытия, изобретения» № 12 за 1967 год, авторское свидетельство СССР № 197268.

ВОПРОС № 82

Войско полководца Ганнибала спускалось по узкой и крутой заснеженной скользкой тропе. Одно неосторожное движение — и человек летел в пропасть. А впереди была Италия, впереди был Рим. И вот они подошли к огромной скале, обойти это место было невозможно. Скала преграждала дорогу, через неё с трудом перебрался бы пеший, о коннице и шести слонах Ганнибала речи и не шло… Так или иначе, но на следующее утро всё войско Ганнибала спустилось с гор в долины Италии. Каким образом это произошло?

Как работают совместно операторы количественного и качественного уровней, то есть в данном случае принцип объединения в пространстве, принцип изменения размера и перехода к новому качеству покажем хотя бы на нижеследующем классическом примере.

1870-е годы. Производившийся в Баку керосин разливался в большие 20-пудовые деревянные бочки для отсылки в другие города. Но тяжесть бочек и неполное использование объема трюмов — всё это увеличивало стоимость перевозки керосина на 25 %. Перевозка керосина наливом стала производиться на Волге с 1877 г. и нашла многих подражателей. Но перевозить керосин и нефть наливом в деревянных судах было опасно в пожарном отношении, кроме того, «нефтяные продукты легко просачивались через корпус, чем портили воду и рыбные угодья».

Людвиг Эммануилович Нобель собственноручно спроектировал и выполнил чертежи первого в мире нефтеналивного парохода-танкера «Зороастр», выстроенного по его заказу в Швеции. Как пишут исследователи инженерной деятельности Нобелей: «„Зороастр“ имел стальной корпус длиною в 184 фута (соответственно длине шлюзов Мариинской системы), шириною 27 футов и глубиною 9 футов, емкостью 15 тыс. пудов керосина; машина отапливалась нефтяными остатками (мазутом); ход — 10 узлов[76]. Керосин заливался в восемь цилиндрических емкостей, мощность судовой машины составляла 290 л.с.[77] Несколько позже стали заливать нефть или нефтепродукты прямо в корпуса судов» (Джафаров, Джафаров, 2001).

Кстати именно бакинский преподаватель ТРИЗ Т. Кенгерли ввёл в оборот приём разрешения технических противоречий № 45: «Би-принцип. Используя одновременно два однотипных объекта с разными количественными характеристиками, можно получить качественно новый эффект (напр., биметаллические пластинки; биения, возникающие при сложении двух колебаний, и т. д.)» (выделено нами. — Авт. ).

Но как читатель понимает, изобретательские приёмы работают и в самой повседневной жизни, какую ведут большинство из нас. В советском журнале «Наука и жизнь» многие годы существовал раздел «Маленькие хитрости», ставший источником массы зарубежных патентов и прибыли для западных компаний. Мы же, по бедности своей или недоразумению, говорили испокон веков: «Голь на выдумку хитра». Вот только пара примеров, озвученных некогда в передаче «Мнения знатоков». Вспоминает её ведущий Нурали Латыпов:

«Сам я родом из Узбекистана. Страны, традиционно бедной дровами, живущей на привозном угле. И тем не менее, прежде мы пользовались печным отоплением. Топить печь не только трудоёмкое, но и финансовоёмкое дело. На учительскую зарплату нельзя и по сей день купить столько высококачественного угля, чтоб его хватило на весь отопительный сезон.

И с решением этой проблемы моим отцом связано у меня одно из ярких детских впечатлений. Дело в том, что раньше в Центральной Азии традиционным топливом был так называемый кизяк. В России это добро именуют коровяком. Короче, сушеными коровьими лепёшками, если не оскорбить слух иного телезрителя более крепким словом. Их заготавливали в большом количестве пастухи. Для своих очагов. Отец же почти задаром приобрёл тонну бросового угольного порошка, заплатил разве что за перевозку. Угольная пыль считалась только отходом, который применяли лишь в специально оборудованных котельных.

Из всего того добра, что накапливалось под нашей коровой, замешав его на угольном порошке, отец делал густую смесь. А мы, дети, помогали ему, специальными формочками делая из неё брикеты. Под жарким южным солнцем брикеты быстро высыхали, так что их можно было складировать в штабеля в сарае. Зимой же я увидел, как они ярко горят, и печь гудела посильнее, чем если бы мы топили дровами или углём. Фактически мы использовали попутное бросовое сырьё. Пыль позволяет осуществить более интенсивную газификацию угля, способствует его полному выгоранию, а органический горючий наполнитель как бы склеивал пыль воедино» (Вассерман, Латыпов, 2012, С. 231).

Принцип тот же, объединение в пространстве двух разных, казалось бы, вещей, породило новое качество[78]. Точнее, общее-то у угля и кизяка было, это общее — их горючесть. И она была многократно усилена за счёт синергетики — сложения заранее во времени и в пространстве двух способностей к горению. Восстановленная целостность угля позволяла обойтись без того, чтобы распылять уголь каким-то хитрым образом. Устранение мелкодисперсности приводило к тому, что и сгорание дармового «композита» происходило постепенно.

Близок по ассоциативному ряду и такой примечательный факт. Отходом перерабатывающего производства хлопка является так называемая «гуза-пая», в переводе с узбекского «стебли хлопчатника». Они не только служили основой для получения гидролизного спирта. В условиях дефицита угля и лесных ресурсов гуза-паей, как хворостом, отапливали и помещения. Отходом производства целлюлозы и спирта был клейкий лигнин, накапливающийся на дне баков. Рабочие узбекских предприятий формовали лигнин в кирпичики и пускали снова в дело — в качестве органического топлива. Производство получалось экологичным и безотходным.

Саман — это композитный материал, смесь земли, глины, песка, соломы и воды, укладываемый вручную при возведении монолитных земляных стен. Он широко использовался в Советской Азии с незапамятных времён. Малоросские мазанки — конструкции похожего порядка. Синергетический эффект от совместного применения соломы, своего рода структурной арматуры, и вяжущего наполнителя проверен временем.

Ещё одно детское впечатление от того же из соавторов: «Когда я учился в шестом классе, до нас, наконец, дошел газ. Дома провели паровое отопление. Прораб, руководивший проводкой, сказал, что „за вами остаётся изоляция труб на чердаке и тех, что снаружи дома“. Он при этом назвал какой-то дефицитный и дорогой по тем временам изоляционный материал. Отец размышлял где-то около суток, потом он собрал нас и объявил, что можно гораздо лучше изолировать трубы, используя подручный материал…»

Обратим внимание, что изобретатель, вероятно, задумался и о тяжести конструкции, ведь трубы были на чердаке, то есть решал сразу несколько технических противоречий! Как гласит шестой принцип ТРИЗ — принцип универсальности, «объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах».

«Мы тогда выписывали огромное количество газет, — вспоминал Нурали Латыпов, — которые копились по прочтении пачками. Отец показал нам, как надо сворачивать трубки во всю ширину газетного листа, а чтобы они не разворачивались, поверх наматывали капроновую нить из распущенных старых чулок. Изготовив не одну сотню трубок, мы с братьями стали с интересом ждать, что же будет дальше, и зачем это всё отцу понадобилось. А он обложил трубы парового отопления со всех сторон трубками газетными и спаял сверху изолентой. И так по всей длине. Газетная бумага и капроновая нить мне представлялись такими непрочными материалами, но так или иначе температура на выходе держалась градусов на десять выше, чем предсказал тот мастер парового отопления. Да и когда мы через двадцать лет переехали из того дома, а покупатель осматривал свою будущую собственность, вся изоляция оказалась на месте и исправно сохраняла тепло» (Вассерман, Латыпов, 2012, С.232).

Ну, в заключение покажем, как растёт «снежный ком» преобразований (то есть изобретательских решений) с применением вышеописанной логики… к шахматной игре.

ВОПРОС № 83

Общеизвестно, что современные шахматы, произошедшие от индо-персидских игр, развивают способность к логическому мышлению человека, но, несмотря на более чем трёхсотлетнюю историю правил, остаются игрой избранных. Шахматы отнесены к спортивным играм, а также являются искусством, оставаясь трудными для большинства людей вследствие жёсткой детерминированности: для того, чтобы хорошо играть в шахматы, необходимо много тренироваться и знать теорию игры — большинство шахматных дебютов предопределены на семь-десять ходов вперёд, и если не следовать этой жёсткой шахматной логике — проигрыш неизбежен. Предложите несколько идей по преодолению детерминизма и обоснуйте логику их возникновения.

Ресурсы, которыми мы обладаем в шахматах — это игровые фигуры, игровое поле и сами правила.

Пожалуй, наиболее жёсткое первое правило — «белые» начинают. При игре равных по силе мастеров, можно смело продолжать… и выигрывают. Если не сделают ошибок. Значит, полностью противоположное правило — начинают «чёрные». Но цвет тут роли не играет. Кто первым ходит, то и имеет явное преимущество. Устранение определённости, стирание различий в очерёдности хода было, в общем-то, предусмотрено ещё в «чатуранге», где использовались игральные кости. Ещё один элемент игры, отброшенный в ходе её эволюции на пути к жёсткому детерминизму. Сотрём различие в упорядоченности шахматной игры, введя вероятностный фактор — игральную кость — три её грани покрашены в один цвет, а три других — в противоположный. Чей «цвет выпадает», у того возникает и право хода.

Или, что ещё интереснее, на шесть боковых граней нанесём символы пяти шахматных фигур и пешки. Разумеется, и такая конструктивная особенность приведёт к вариациям правил. Например, теперь можно перемещать или совершенно конкретную фигуру (и пропускать ход, если таковой уже нет на игровом поле). Или же можно «ходить» любой из фигур ниже по иерархии (в сравнении с «выпавшей» на игральной кости) и пешкой, соответственно — на выбор игрока.

Шахматная доска ограничена и определена в пространственных размерах — 8 на 8 клеток. Можно уменьшить эти размеры, например до тридцати шести клеток, при этом придётся отказаться от парных фигур (или коней, или слонов, или ладей) и двух пешек при этих фигурах. Поскольку с сокращением размеров игрового пространства увеличивается детерминизм, это изменение можно сочетать с использованием игральной кости для компенсации усиливающейся определённости. На одну из её граней наносится символ пропуска хода (поскольку число фигур на доске сократилось до четырёх). Синтез двух взаимоисключающих правил в том, что могут ходить либо «чёрные», либо «белые», нарушается. Теперь несколько раз подряд могут делать ход либо одни, либо другие. Или может сохраняться упорядоченность и попеременность.

Элемент случайности способен как помочь игроку, так и помешать ему, чем изобилует реальная жизнь. В традиционных шахматах игрок в любой ход имеет право задействовать любую фигуру, в реальной же жизни человек имеет доступ не ко всем ресурсам сразу, а действует в рамках меняющихся ограничений. Введение вероятностного фактора, учет везения-невезения, позволяет уравнять шансы на победу профессионалов, спортсменов и любителей, а также свести преимущество в знании дебютов к минимальному. С введением элемента случайности игра становится азартней традиционных шахмат, но, как и раньше, способствует развитию математических и логических способностей, а также развивает вариативность человеческого мышления, умение предвидеть варианты исходов событий, связанных с внешними факторами и удачей.

А что, если увеличить игровое поле в размерах, то есть, использовать шахматную доску 10 на 10 клеток, или 12 на 12, или, пойдём дальше — бесконечную? Почему бы и нет!

Такого рода конструктивное изменение потребует от нас коренного пересмотра жизни самих фигур и пешек. Бесконечность игрового пространства логически означает и бесконечное число разнообразных фигур — как временных структур. Временность фигур в обычных шахматах проявляет себя в том, что они могут быть «съедены», сняты с доски, а также в том, что пешка, достигнув восьмой горизонтали, превращается по воле игрока в любую из существующих — в рамках правил пяти — фигур.

Сделаем всё наоборот. Запретим снимать съеденные фигуры. Пусть все они остаются в игровом пространстве, на доске, но в то же время как бы в неразличённом состоянии. С первого взгляда — чушь несусветная. Но не будем торопиться с выводами! Есть не менее жёсткое правило классических шахмат, что на одной игровой клетке может стоять одна и только одна фигура или пешка. Но, допустим, это не так. Пусть на любой клетке шахматной доски может стоять сколь угодно большое число фигур! Как в пространстве посадить слона на коня, а на слона посадить ферзя с королём у него на плечах? Получается пирамида, то есть башня, столб. Выполним же конструктивно все шахматные фигуры в виде шашек, на боковую поверхность которых нанесём необходимые шахматные символы. Пусть эти шашки будут выполнены конструктивно так, чтобы легко удерживаться одна на другой (с помощью магнита или паза с выступом). Такая башня могла бы создаваться в процессе игры как объединением собственных фигур, так и захватом фигур противника. Башня могла бы и распадаться — дробиться последовательно в пространстве (вдоль) или параллельно, то есть одновременно (во все стороны) (Латыпов, Гаврилов, 1996, С. 58–59).

И, как уже говорилось, самый главный шаг, изначально ограниченное число шахматных ресурсов на бесконечной шахматной доске, должно диалектически потребовать от нас правила порождения новых, пусть и примитивных фигур, роста их количества. Например, две шахматные башни, стоящие на соседних клетках, могут порождать на любой свободной клетке возле себя, новую шашку-фигуру. Можно отказаться от шахматных обозначений на боковых поверхностях. Все фигуры будут порождаться в процессе игры из одинаковых на начальной стадии шашек, и в зависимости от высоты (размера, массы) создаваемых башен приобретать всё новые и новые свойства. Шахматная доска может также менять свои характеристики — приобретать топологию, однородное — когерентное — пространство игровых клеток может быть заменено на неоднородное, и т. д. (Гаврилов, Ёлкин, 1998, С. 59–79).

Словом, есть великое множество вариантов создания целого класса новых шахматно-шашечных, столбовых, вероятностных настольных игр.

И правила их, в сущности, являются изобретательскими приёмами или же операторами языка Диал.

Данный текст является ознакомительным фрагментом.