НОВЫЙ ЧЕМПИОН — КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
НОВЫЙ ЧЕМПИОН — КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Инженер-подполковник Г. НЕСТЕРЕНКО, кандидат технических наук
Во все времена материалы, используемые в технике, были одним из главных условий ее развития. Через деревянную соху, каменный топор, а затем железные орудия труда пролегал путь человечества к вершинам современной цивилизации. Стекло, сталь, алюминий, пластмассы— вот материалы, из которых строились последующие ступени научно-технического прогресса. Однако возможности подобных материалов небезграничны. Не случайно, когда речь заходит о реализации новых технических проектов, нередко указывают на то, что почти все эти возможности исчерпаны, нужны новые материалы. Но вот в середине шестидесятых годов на страницах научных журналов стали встречаться необычные термины: «монокристаллические нити», «композиционные материалы». Специалисты заговорили о новых перспективах развития авиационной, космической, ракетной и другой техники.
Композиционные, или, как их иногда еще называют, «композитные», — это значит составные, неоднородные, сборные, как бы специально конструируемые материалы. Их нет в природе. Они составляются искусственным путем из элементов, изготовляемых из различных материалов, и имеют упорядоченную, построенную по определенному замыслу внутреннюю структуру.
Простейшие композиционные материалы давно всем известны. Это прежде всего железобетон, состоящий из бетонной массы и скрепляющей ее стальной арматуры. Еще — текстолит, внутренняя структура которого представляет собой слои прочной ткани, скрепленные затвердевшей смолой. В последние годы, благодаря успехам химии, широко стал применяться «стеклопластик» — тоже составной, композиционный материал. Из «стекловолокна»— неорганического соперника нейлона и других высокопрочных синтетических волокон — методом «намотки» с последующей пропиткой полимеризуемыми, затвердевающими смолами изготавливаются сейчас даже крупные, высоконагруженные конструкции — корпуса ракет, катеров, части самолетов, вертолетов. В печати сообщалось, например, о первом полете экспериментального самолета, конструкция которого почти целиком выполнена из стеклопластиков. Однако особый, повышенный интерес специалистов вызывают не эти композиционные материалы, а другие. Они строятся на принципиально новой основе.
На пути к идеалу
Наукой установлено, что применяемые в современной практике конструкционные материалы обеспечивают лишь 10–15 процентов своей идеальной, то есть теоретически достижимой прочности, твердости и других важных характеристик. Происходит это потому, что внутреннее строение этих материалов представляет собой неупорядоченную, хаотически сросшуюся при остывании расплава смесь кристаллических зерен. Таким структурам, содержащим к тому же примеси, присущи различного рода микродефекты. Если же материал подвергнуть тщательной очистке, а внутреннее строение образца «выправить», построив атомы металла в такую же строгую кристаллическую решетку, как, например, у драгоценных камней, то прочность его и другие свойства станут близкими к идеальным.
Однако получать целиком детали или их заготовки в виде монолитных кристаллов пока не удается. Чистые монокристаллы получают сейчас в ряде стран посредством весьма сложной технологии лишь в виде тончайших нитей, диаметром до 0,1 миллиметра и длиной до нескольких сантиметров. Зато прочность таких монокристаллических нитей на разрыв может достигать 1400 кг/мм2, что примерно в десять раз больше, чем у большинства конструкционных сталей. Идея создания новых композиционных материалов именно в том и состоит, чтобы использовать сверхпрочные монокристаллические нити в качестве арматуры применяемых сегодня конструкционных материалов, «укрепить» их нитями так же, как железная арматура укрепляет бетон. При этом матрицей, то есть связующей основой, служат различные металлы, керамика и другие материалы.
Конечно, прочностные характеристики созданных таким образом материалов оказываются ниже, чем у идеальных монокристаллов, но зато они могут быть значительно, при некоторых сочетаниях в несколько раз, выше, чем у обычных, исходных конструкционных материалов. Так, упрочение алюминиевых сплавов нитевидными кристаллами сапфира позволяет увеличить их прочность в 2–3 раза. С точки зрения ювелиров, сапфир — драгоценный камень, а для химика — это окись алюминия, из которой получаются нитевидные кристаллы высокой прочности. В лабораторных условиях, как указывает печать, удается получать также монокристаллы химически чистого алюминия, железа, окиси кремния, карбида бора и многих других элементов и их соединений.
В отличие от известных ранее волокнистых материалов нитевидные кристаллы в принципе могут обладать близкой к идеальной прочностью, поскольку у них отсутствуют ослабляющие микротрещины, резкие переходы в структуре и другие «дефекты». Поэтому-то специалисты четко разграничивают монокристаллические нити и прочие материалы, используемые ныне в качестве арматуры — стекловолокно, проволока.
Чистые нитевидные кристаллы получают в настоящее время различными способами «выращивания» при процессах кристаллизации из жидких, паровых и газообразных фаз. Изготовить длинные монокристаллические нити в виде непрерывного волокна, которые можно было бы использовать для изготовления конструкций методом намотки, как из стекловолокна, сообщает печать, пока не удается. С увеличением длины и диаметра монокристаллических нитей уменьшается их прочность, так как повышается вероятность появления микротрещин и других дефектов структуры.
Установлено, что близкая к идеальной структура возможна лишь в тонких кристаллических нитях диаметром менее 0,1 мм. Длина таких нитей составляет, как правило, от нескольких миллиметров до двух-трех сантиметров. Однако разрабатываются методы получения все более длинных нитевидных кристаллов. В печати сообщалось, что одной из английских фирм удалось получить нити из графита длиной до 90 см. Специалисты этой фирмы надеются в недалеком будущем получить нити длиною до 4,8 километра, то есть практически непрерывное графитовое волокно.
Сообщалось, что использование монокристаллических нитей и металлических матриц позволяет уже сейчас получать конструкционные материалы с пределом прочности до 500 кг/мм2 и более. Кроме того, многие композиционные материалы сохраняют высокие значения своих характеристик в условиях работы при очень большой температуре. Так, образцы, изготовленные из композиционного материала на основе серебряной матрицы, армированной нитевидными кристаллами сапфира, сохраняют свои механические характеристики при температуре, близкой к точке плавления серебра. По сообщениям зарубежной печати, сейчас ведутся исследования, связанные с получением нитевидных кристаллов специально из жаропрочных материалов — вольфрама, молибдена, тантала.
От нити к материалу
Технология производства деталей и конструкций из композиционных материалов имеет ряд специфических особенностей и представляет значительную сложность. Кроме правильного подбора матриц и армирующих нитей по соображениям прочности, температурным характеристикам и т. д. необходимо принимать в расчет возможность химического взаимодействия материалов матрицы и арматуры, растворимость нитей в расплавленной матрице, смачиваемость нитей арматуры материалом матрицы. В некоторых случаях, отмечалось в печати, приходится покрывать монокристаллические нити специальными изолирующими или связующими покрытиями для получения нужных условий на границах арматуры и матрицы.
При изготовлении листов, профилей, различных деталей и конструкций из композиционных материалов на основе металлических и керамических матриц в настоящее время применяются различные методы: отливка, жидкая инфильтрация (пропитка), порошковая металлургия, диффузионное склеивание. Некоторые методы предусматривают предварительное покрытие монокристаллических нитей материалом, предназначаемым в качестве матрицы, с последующей формовкой, прессованием и спеканием заготовки или сразу готовой детали, не требующей механической обработки. Однако технологические процессы производства конструкций из композиционных материалов, и особенно процессы выращивания нитевидных кристаллов, остаются пока что мало освоенными и весьма дорогими.
Однако трудности эти, как полагают, со временем будут преодолены.
Замечательным свойством композиционных материалов на основе монокристаллических нитей оказывается то, что они обеспечивают получение более прочных деталей при значительно меньшем весе. Снижение веса достигается не только путем уменьшения объема используемого материала ввиду его большой прочности, но и за счет того, что композиционный материал, как правило, имеет меньший удельный вес, чем те обычные конструкционные материалы, которые он заменяет. В печати сообщалось, что армирование волокнами сапфира в 20–25 раз повышает удельную прочность серебра, в 12–15 раз — чистого алюминия, в 7–9 раз — эпоксидной смолы, в 3–4 раза — никеля.
Еще более существенно повышается при армировании нитевидными кристаллами предел текучести материалов, то есть нагрузка, при которой материал образца получает существенные остаточные деформации. Так, предел текучести алюминия и серебра, армированного нитями сапфира, повышается примерно в 30 раз при комнатной температуре и еще больше при повышенной. Материал, имеющий в своей структуре нитевидные кристаллы, менее чувствителен также к «усталости». Он более устойчив при вибрациях и опасных колебаниях авиационных конструкций типа флаттер. Причина такой повышенной устойчивости состоит в том, что каждое из тысяч волокон композиционного материала в конструкции несет свою нагрузку независимо, так что разрыв одного или нескольких волокон не снижает прочности остальных. Именно поэтому композиционный материал менее чувствителен к появлению и развитию «усталостных» трещин.
Исследования, интенсивно ведущиеся в лабораториях многих стран мира, направлены сейчас в основном на разрешение проблем, связанных с получением и обработкой монокристаллических нитей, выбором наилучших методов их размещения в матрицах, оптимизацией количества и ориентацией нитей в зависимости от величины и направления действия нагрузок и т. д. Характерно, что во многих случаях эти исследования производятся с помощью моделирования на электронных вычислительных машинах.
За стенами лабораторий
В настоящее время имеется немало примеров практического применения новых композиционных материалов в конструкциях авиационных и ракетных двигателей, самолетов и вертолетов. По сообщениям зарубежной печати, в 1967–1968 годах началось освоение промышленного производства деталей самолетов и ракет из бороволокна, графитового волокна и других композиционных материалов. Кроме лопастей роторов вертолетов и лопаток для газотурбинных двигателей из них уже изготавливаются и проходят испытания такие высоконагруженные элементы авиационных конструкций, как самолетные шасси, обшивка и силовой набор крыльев, фюзеляжей и оперения самолетов. Проведенные зарубежными специалистами расчеты показывают, что переход к композиционным материалам позволяет уменьшить вес этих элементов конструкций от 20 до 50 процентов, то есть примерно в полтора-два раза.
Как сообщал журнал «Эркрафт», английская фирма «Роллс-Ройс» уже несколько лет применяет стеклопластик и другие композиционные материалы в конструкциях воздушно-реактивных двигателей. В последнее время фирма осваивает композиционный материал «хай-фил» на основе графитового волокна. Рабочие лопатки вентиляторов и компрессоров реактивных двигателей, выполненных из хайфила, оказываются значительно легче, долговечней и даже дешевле, чем металлические,
Зарубежная печать сообщает о применении монокристаллов и композиционных материалов на новых американских самолетах F-5A, F-111, С-5А, а также в приборостроении, реакторостроении и других областях техники. Композиционные материалы предполагают еще более широко использовать на проектируемых в США самолетах, таких, как F-14, F-15 и «AMSA». Как сообщал недавно журнал «Металл инженирииг куотерли», американские специалисты подсчитали, что применение композиционных материалов позволит уменьшить вес конструкции разрабатываемого сверхзвукового бомбардировщика «AMSA», которому недавно дано обозначение «В-1A», на 25–32 процента.
Однако промышленное производство композиционных материалов на основе монокристаллических нитей все же находится за рубежом еще в стадии становления. Получение многих типов монокристаллов доступно пока только в лабораторных масштабах, а стоимость некоторых из них называют баснословной — до 40 тысяч долларов за килограмм. Правда, зарубежные специалисты считают, что уже в ближайшие годы, по мере внедрения в промышленность, стоимость монокристаллических нитей и композиционных материалов будет быстро снижаться.
Обращают внимание и на то, что одно из существенных преимуществ композиционных материалов составляет возможность изготовления конструкций без механической обработки или с очень незначительной обработкой. Поэтому окончательная стоимость деталей и конструкций из композиционных материалов может оказываться даже меньше, чем из обычных металлов и сплавов.
На проходивших в последние годы крупных международных конференциях и симпозиумах по проблемам композиционных материалов отмечалось быстрое развитие теории, технологии производства и практического применения нитевидных кристаллов и композиционных материалов на их основе. Начал издаваться специальный журнал по проблемам композиционных материалов. Им посвящается также много страниц других изданий.
Предполагают, что в ближайшие 3–5 лет практически будут использоваться армирующие материалы с прочностью на растяжение до 700 кг/мм2, а в последующие 5—10 лет такая прочность может быть получена не только у армирующих, но и у самих композиционных материалов, из которых будут изготавливаться реальные конструкции. Многие специалисты рассматривают композиционные материалы как основу дальнейшего прогресса авиационной, космической и многих других видов техники.
Но, как это было уже не раз, к новому достижению науки тотчас потянулись военные круги империалистических государств. Выше приводились примеры использования композиционных материалов в конструкциях военных самолетов. В США такое применение важного технического новшества считается первоочередным. Это еще раз свидетельствует о том, что империализм стремится использовать достижения человеческого разума, талант ученых и инженеров не на пользу человечеству, не для улучшения жизни на земле, а для осуществления своих агрессивных реакционных целей.
Однако монополии на технический прогресс не существует. Разработка новых композиционных материалов доступна всем высоко развитым в научном и техническом отношении странам. А в каких именно направлениях эти материалы будут применяться и в каких масштабах — покажет время.