17.5. Возникающие и самоорганизующиеся структуры
17.5. Возникающие и самоорганизующиеся структуры
В некотором смысле можно считать, что клетки человеческого организма представляют собой кульминацию развития природы. Действительно, в результате эволюции за миллионы лет природа создала совершенно уникальную, автономную и реагирующую систему из датчиков и актуаторов (приводных механизмов), которая способна действовать в соответствии с программами и командами. Часть этих программ закладывается в систему при рождении, а часть – вырабатывается некоторой структурой управления, которую можно назвать распределенным по системе интеллектом. Клетка является саморегулируемой и самоуправляемой системой, или устройством, а ее ядро можно уподобить центральному процессору, который способен воспринимать и перерабатывать разнообразную поступающую информацию. В клетке выявлены разнообразные механизмы передачи и обработки информации, приводящие к выработке соответствующих реакций. Например, биологи подробно изучили так называемый хемотаксис (клеточное движение, инициируемое химическими агентами), при котором поступление химического сигнала порождает механическое движение так называемой цитоскелетной сети.
В качестве сложной системы биологическая клетка может служить символом концепции «возникающего поведения», когда реакция системы на входные сигналы определяется сложной обратной связью. В качестве примера можно привести поведение клеток нейтрофильных лейкоцитов (нейтрофилов), способных обволакивать и пожирать бактерии типа Staphylococcus aureus, как показано на рис. 17.7. Процесс захвата и уничтожения бактерий, называемый фагоцитозом, демонстрирует достаточно сложное, согласованное и целенаправленное поведение клеток нейтрофила, которые оказываются способными не только чувствовать химические градиенты, создаваемые бактериями, но и двигаться по сложным траекториям (определяемым этими градиентами) по направлению к бактерии, окружая ее с разных сторон. Процесс фагоцитоза обеспечивается регистрацией химических сигналов сенсорами клетки нейтрофила и внутриклеточной системой обработки этих сигналов, позволяющей менять траектории движения клетки и осуществлять требуемые маневры.
Рис. 17.7. Процесс фагоцитоза, то есть «погони» нейтрофила за бактерией типа Staphylococcus aureus. Нейтрофил регистрирует химические градиенты, создаваемые бактерией, и осуществляет сложные маневры по ее окружению и захвату. По данным работы Д. Роджерса[128]
Основной задачей в создании крупномасштабных и сложных молекулярных систем является обеспечение именно такого согласованного, «возникающего» из оценки ситуации поведения (биологи называют это подражание естественным клеточным процессам мимикрией), что позволило бы создать аналоги существующих в природе механизмов преобразования энергии, биохимического воздействия и т. п. Непрерывный прогресс в развитии нанотехнологий позволяет надеяться на создание в близком будущем систем описываемого типа, в которых внешние стимулы или сигналы (свет, наличие химических веществ и т. п.) будут приводить к воспроизводимому и согласованному «возникающему» поведению.
В качестве наглядного примера можно привести фотонные кристаллы из пористого кремния, изготовленные по новому методу, предложенному Линком и Сейлором[129]. Нестандартный способ получения этих частиц позволяет формировать кристаллы необычного строения с непривычными физическими свойствами, из-за которых некоторые исследователи называют такие микрочастицы «умными пылинками». Характерной особенностью частиц «умной пыли» выступает то, что они как бы составлены из двух разных пластинок, в результате чего их противоположные поверхности обладают разными свойствами: одна сторона (условно зеленая) является гидрофобной, то есть водоотталкивающей, а другая (условно красная) – гидрофильной. Химики, которые иногда сталкиваются с подобными молекулами (в которых одна часть структуры является гидрофобной, а другая гидрофильной), называют их амфифильными и используют для структурирования различных растворов. Микропылинки пористого кремния описываемого типа сохраняют способность к структурированию, в частности, на водной поверхности они самопроизвольно ориентируются в определенной позиции, формируя монослой, в котором частицы обращены гидрофильными (красными) сторонами к воде, а гидрофобными (зелеными) – к воздуху.
Очень интересным выглядит поведение частиц пористого кремния при добавлении в воду капли гидрофобного растворителя дихлорметана, так как пылинки самоорганизуются на поверхности этой капли, как бы «прилипая» к ней своими гидрофобными участками. В результате такой самосборки в растворе, содержащем никак не связанные друг с другом индивидуальные пылинки, неожиданно возникает макроскопический объект, обладающий собственными оптическими, физическими и другими особенностями (рис. 17.8). Это необычное явление и позволяет говорить об «умной пыли», так как опыты показали, что такие частицы могут достаточно эффективно применяться для детектирования разнообразных химических веществ. Более того, при введении в такие частицы дополнительных распознающих центров, они могут использоваться для детектирования или обеззараживания патогенных микроорганизмов в воде и пище.
Такие вещества могут найти много возможностей практического применения, однако с чисто научной точки зрения в описанном поведении частиц нас должна заинтересовать в первую очередь их способность к самоорганизации, то есть проявлению внутренних закономерностей, управляющих развитием характеристик поведения системы. В рассматриваемом конкретном случае очень важно, что поведение системы на микроскопическом уровне неожиданно меняется при добавлении капли постороннего вещества (дихлорметана), после чего в системе возникают новые макроскопические объекты, то есть проявляется «скрытое» свойство системы.
В настоящее время теория и экспериментальные исследования проявления потенциальных (их можно также назвать скрытыми, внутренними, проявляющимися и т. п.) свойств различных систем переживают период накопления фактов и представлений. Представляется очевидным, что эта проблема является исключительно важной, а ее значение будет непрерывно возрастать по мере создания все более сложных искусственных систем, особенно когда эти системы приобретают новые функциональные способности (сравнимые с функциями биологической клетки), относящиеся, например, к переработке энергии, принятию самостоятельных решений и т. д. Дальнейшее развитие науки и техники (безусловно, связанное с нанотехнологиями) автоматически должно приводить нас к «слиянию» различных научных дисциплин, одним из последствий чего станет доведение «мимикрии» до полного подобия поведения систем. Иными словами, совершенствуя наши знания и технологические приемы, мы будем приближаться к пределу, когда перестанем воспринимать разницу между искусственными и природными системами. Возможно, преодоление этого интеллектуального барьера и позволит нам реально использовать нанотехнологии для улучшения параметров человеческого существования.
Данный текст является ознакомительным фрагментом.