12. Фазовые превращения в твердом состоянии
12. Фазовые превращения в твердом состоянии
Фаза – это однородная часть системы, которая отделена от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.
При кристаллизации чистого металла в системе имеются две фазы: жидкая (расплавленный металл) и твердая (зерна затвердевшего металла). В твердых сплавах фазами могут быть зерна чистого металла, зерна твердого раствора и зерна химического соединения. Многие металлы в жидком состоянии растворяются один в другом в любых соотношениях. В результате растворения образуется однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла. Благодаря указанному взаимодействию на практике с целью равномерного распределения веществ в сплаве, прибегают к их расплавлению. Некоторые металлы, сильно различающиеся размерами атомов, не растворяются в жидком состоянии, а другие металлы растворяются в жидком состоянии ограниченно. При образовании сплавов в процессе их затвердевания возможно различное взаимодействие компонентов.
Если в процессе кристаллизации сила взаимодействия между однородными атомами больше силы взаимодействия между разнородными атомами, то после кристаллизации образуется механическая смесь, состоящая из зерен чистых металлов. В этом случае в твердом сплаве будут присутствовать зерна одного чистого металла и рядом с ними зерна другого чистого металла. Такая форма взаимодействия возникает при большом различии в свойствах входящих в сплав металлов.
Другой формой взаимодействия между веществами, входящими в состав сплава, является образование твердых растворов.
Твердые растворы – это твердые фазы, в которых соотношения между компонентами могут изменяться. В твердом растворе так же, как и в чистых металлах, атомы в пространстве расположены закономерно и образуют кристаллическую решетку. Этим они и отличаются от жидких растворов. В твердом растворе одно из входящих в состав сплава веществ сохраняет присущую ему кристаллическую решетку, а второе вещество, которое утратило свое кристаллическое строение, в виде отдельных атомов распределяется в кристаллической решетке первого. Первое вещество является растворителем, а второе – растворимым. В зависимости от характера распределения атомов растворимого элемента различают твердые растворы внедрения, замещения и вычитания; независимо от типа твердого раствора общим для них является то, что они однофазны и существуют в интервале концентраций. Для твердых растворов характерен металлический тип связи.
Наименьшие размеры атомов имеют некоторые металлоиды – водород, азот, углерод, бор, которые образуют с металлами твердые растворы внедрения. Но и у этих элементов размер атомов несколько превышает 12б размер межатомных промежутков в кристаллической решетке металлов, поэтому при образовании твердых растворов внедрения решетка искажается и в ней возникают напряжения. При этом концентрация твердого раствора внедрения не может быть высокой. Она редко превышает 1–2%. В твердых растворах замещения атомы растворимого элемента занимают места атомов основного металла. Посторонние атомы могут замещать атомы растворителя в любых местах, поэтому такие растворы называют неупорядоченными твердыми растворами. Размеры атомов растворимого элемента всегда отличаются от размеров атома растворителя (они больше или меньше), поэтому при образовании твердого раствора замещения кристаллическая решетка металлара-створителя искажается, не утрачивая при этом своего основного строения. Твердые растворы замещения могут быть ограниченными и неограниченными. Одно из условий неограниченной растворимости – размерный фактор. Чем больше различие в атомных радиусах, тем меньше растворимость.
С понижением температуры в твердых растворах замещения происходит процесс перераспределения атомов, в результате которого атомы растворенного элемента займут строго определенные места в решетке растворителя. Такие твердые растворы называют упорядоченными твердыми растворами, а их структуру – сверхструктурой.
Некоторые элементы видоизменяют свое кристаллическое строение в зависимости от изменения внешних условий – температуры и давления. В твердом состоянии литий, молибден имеют объемно-центрированную кубическую решетку; алюминий, серебро, золото, платина – гранецентрированную, а магний, цирконий – гексагональную. При изменении температуры может оказаться, что для того же металла более устойчивой будет другая решетка, чем та, которая была при другой температуре. Это явление носит название полиморфизма. Каждый вид решетки представляет аллотропическое видоизменение или модификацию. При полиморфных превращениях металлов основное значение имеет температура. Превращение одной аллотропической формы в другую происходит при постоянной температуре, называемой температурой полиморфного превращения и сопровождается тепловым эффектом, подобно явлениям плавление-затвердевание или испарение-конденсация. Это связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
3. Диффузионные и бездиффузионные превращения
3. Диффузионные и бездиффузионные превращения Под диффузией понимают перемещение атомов в кристаллическом теле на расстояния, превышающие средние межатомные расстояния данного металла. Если перемещения атомов не связаны с изменением концентрации в отдельных объемах,
1. Влияние легирующих компонентов на превращения, структуру, свойства сталей
1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах, подразделяют на карбидо—образующие и
3. Диаграмма изотермического превращения аустенита
3. Диаграмма изотермического превращения аустенита На рис. 10 представлена диаграмма изотермического превращения аустенита стали, содержащей 0,8 % углерода.По оси ординат откладывается температура. По оси абсцисс – время. Рис. 10. Диаграмма изотермического превращения
30. Закон сохранения и превращения энергии
30. Закон сохранения и превращения энергии Первый закон термодинамики основан на всеобщем законе сохранения и превращения энергии, который устанавливает, что энергия не создается и не исчезает.Тела, участвующие в термодинамическом процессе, взаимодействуют друг с
ПРЕВРАЩЕНИЯ САМОВАРА
ПРЕВРАЩЕНИЯ САМОВАРА Для начала давайте поставим самовар.Было углей в самоваре полно, а вскипел самовар — и на дне одна зола. Где угли?Как где? Сгорели. С кислородом соединились. Обернулись летучим газом и улетели в трубу. Это каждый знает. А кто не поверит, те могут газ
3.1. Структура вещества в твердом состоянии
3.1. Структура вещества в твердом состоянии В твердом состоянии большинство неорганических материалов (более 96 %) имеют кристаллическое строение, т. е. правильное, упорядоченное, периодическое расположение атомов, ионов или молекул в пространстве.Характер расположения
§ 4.18 Фазовые переходы 1-го и 2-го рода
§ 4.18 Фазовые переходы 1-го и 2-го рода Я полагаю, что следует ввести в физику понятия симметрии, столь привычные для кристаллографов. П. Кюри, "О симметрии физических явлений", 1894 г. Эти исследования, если бы они были продолжены П. Кюри, могли бы, вероятно, иметь для развития
2.9. ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ
2.9. ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ В связи с открытием фундаментального физического явления — электромагнитной индукции, на основе которого получили развитие многие ветви современной электротехники, уместно рассмотреть здесь историю
7. Фазовые переходы I и II рода
7. Фазовые переходы I и II рода Компоненты в жидком состоянии (компоненты А) растворимы неограниченно, компоненты в твердом состоянии (компоненты В) не образуют химических соединений и нерастворимы.Диаграммы состояния представляют график в координатах сплава –
22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением
22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением Полная взаимная растворимость в твердом состоянии возможна
23. Система с тройной эвтектикой и практически полным отсутствием растворимости компонентов в твердом состоянии; изотермические и политермические сечения
23. Система с тройной эвтектикой и практически полным отсутствием растворимости компонентов в твердом состоянии; изотермические и политермические сечения Диаграммы состояния двойных сплавов строят на плоскости: по оси абсцисс откладывают концентрацию компонентов, по
27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре
27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими
37. Отпуск сталей. Превращения в стали при отпуске, изменение микроструктуры и свойств
37. Отпуск сталей. Превращения в стали при отпуске, изменение микроструктуры и свойств Отпуском называется операция нагрева закаленной стали для уменьшения остаточных напряжений и придания комплекса механических свойств, которые необходимы для долголетней
9.2.7 Отчет о состоянии конфигурации
9.2.7 Отчет о состоянии конфигурации Цель отчетности о состоянии конфигурации состоит в обеспечении информации для управления конфигурацией процессов жизненного цикла ПО относительно идентификации конфигурации, базовых линий, сообщений о дефектах и контроля изменений.
Буслаева Елена Михайловна
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉