22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением
22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением
Полная взаимная растворимость в твердом состоянии возможна тогда, когда оба компонента имеют одинаковые кристаллические решетки и атомные диаметры компонентов мало отличаются по размерам. Такая диаграмма имеет простой вид и состоит из двух линий ликвидус и солидус, пересекающихся между собой в точках кристаллизации чистых компонентов А и В. Все сплавы затвердевают в некотором интервале температур (С = 1).
Если процесс кристаллизации протекает в условиях ускоренного охлаждения, что обычно имеет место при получении литых деталей и слитков, то диффузионное выравнивание состава у кристаллов, выпавших при температурах выше t3, не успевает происходить в результате чего получается неодинаковый состав не только у отдельных кристаллов, а в каждом из них. Внутренние участки кристалла будут более богаты тугоплавким компонентом В, наружные – компонентом А. Это явление неоднородности химического состава носит название
Первые кристаллы поверхности слитка будут обогащены компонентом В, а последние, образовавшиеся в середине слитка, – компонентом А. В результате этого возникает макроликвация в слитке.
Ликвация играет отрицательную роль и особенно в тех случаях, когда вредные примеси распределяются неравномерно. Повышенное содержание вредных примесей может привести к преждевременному разрушению деталей.
Имея диаграмму состояния, можно проследить за фазовыми превращениями любого сплава и указать состав и количественное соотношение фаз при любой температуре. Это осуществляется при помощи двух простых правил.
Химический состав выделяющихся кристаллов по мере снижения температуры изменяется по линии солидус от хе до хс. В это же время состав жидкой фазы изменяется по линии ликвидус от хс до хi Это дает основание сформулировать правила определения состава фаз (правило концентраций) и количественного соотношения фаз (правило отрезков).
Компоненты: А и В; фазы: Ж,?,?, где ? – твердый раствор атомов компонента В в кристаллической решетке компонента А, а ? – твердый раствор атомов компонента А в кристаллической решетке компонента В.
В зависимости от взаимодействия указанных трех фаз возможны два вида диаграмм: диаграмма с эвтектикой и диаграмма с перитектикой.
Диаграмма состояния с эвтектикой. Линия ВСЕ является линией ликвидуса, линия ЕВСКЕ – линией солидуса. Линии ВМ и КГ показывают предельную растворимость компонентов. Как и в предыдущих случаях, за процессом кристаллизации любого сплава можно проследить, пользуясь правилом фаз и правилом отрезков.
Система – это совокупность фаз в твердом или жидком состоянии, находящихся в равновесии при определенных внешних условиях (температуре и давлении).
Разные аллотропические формы принято обозначать буквами греческого алфавита ?, ?, ? которые в виде индексов добавляют к символу, обозначающему элемент. Аллотропическую форму, устойчивую при самой низкой температуре, обозначают буквой ?, существующую при более высокой температуре ?, затем ?. Примером аллотропического превращения, обусловленного изменением давления, является видоизменение кристаллического строения углерода, который может существовать в виде графита и алмаза. Полиморфизм имеет большое практические значение. Используя это явление, можно упрочнять или разупрочнять сплавы с помощью термической обработки.
Большой практический интерес представляют сплавы, у которых один из компонентов или оба имеют полиморфные превращения. В этих сплавах в результате термической обработки можно получать метастабильные состояния структуры с новыми свойствами.
После кристаллизации всех сплавов данной системы в определенном интервале температур образуется твердый раствор ?, который при понижении температуры ниже t3 испытывает эвтектоидное превращение ?C ? ?E + ?
Образовавшуюся смесь двух твердых фаз называют эвтектоидом. В связи с переменной растворимостью компонентов в твердых растворах ? и ? при дальнейшем охлаждении следуют вторичные выделения твердых растворов ?II и ?II.
Некоторые элементы видоизменяют свое кристаллическое строение, т. е. тип кристаллической решетки, в зависимости от изменения внешних условий – температуры и давления. Существование вещества в различных кристаллических формах в зависимости от внешних условий обусловливается его стремлением к состоянию с меньшим запасом свободной энергии. Это явление носит название полиморфизма или аллотропии. Каждый вид решетки представляет аллотропическое видоизменение или модификацию. Каждая модификация имеет свою область температур, при которых она устойчива.
При полиморфных превращениях металлов основное значение имеет температура. Превращение одной аллотропической формы в другую происходит при постоянной температуре, называемой температурой полиморфного превращения, и сопровождается тепловым эффектом, подобно явлениям плавление-затвердевание или испарение-конденсация. Это связано с необходимостью затраты определенной энергии на перестройку кристаллической решетки.
Атомные объемы и соответственно полные энергии различных модификаций, как правило, различаются мало, но бывают и исключения.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Системы возбуждения
Системы возбуждения Вопрос. Что называется системой возбуждения?Ответ. Называется совокупность оборудования, аппаратов и устройств, объединенных соответствующими цепями, которая обеспечивает необходимое возбуждение автоматически регулируемым постоянным током
Трубопроводные системы
Трубопроводные системы Кран на кухне вышел из строя, лопнула труба центрального отопления, на дачном участке возникла необходимость проложить водопроводную систему орошения… Ремонт и замена элементов различных действующих трубопроводных систем, а тем более
7.8. Две системы
7.8. Две системы Мы имеем перед собой две кибернетические системы. Первая система — человеческий мозг. Ее функционирование — индивидуальное человеческое мышление. Ее задача — координация действий отдельных частей организма в целях сохранения его существования. Эта
Подструктура системы
Подструктура системы Мы будем конструировать нашего робота на основе модели радиоуправляемого автомобиля. В идеальном случае модель должна иметь систему пропорционального управления ходом и поворотами автомобиля. В нашем прототипе используется именно такая модель
Рабы Системы
Рабы Системы Памяти заключенных спецтюрьмы ЦКБ-29 НКВДПродолжение. Начало см. "Мир Авиации:" № 4, 1993 г.Наконец наступила стадия строительства деревянного макета двухмоторного бомбардировщика в натуральную величину. За отсутствием подходящего помещения пришлось это
4.3.2. Системы сертификации
4.3.2. Системы сертификации В соответствии с действующими положениями в промышленности и в Авиарегистре (последние обязательны для промышленности и гражданской авиации) система сертификации предусматривает постоянный (непрерывный) и поэтапный контроль соответствия
7.1. Система качества как часть системы управления организацией
7.1. Система качества как часть системы управления организацией Все виды деятельности, встречающиеся в работе организации, мы должны рассматривать как технологический процесс. В работе организации эти процессы взаимодействуют сложным образом, образуя систему или сеть
Рабы Системы
Рабы Системы Продолжение. Начало см. «Мир Авиации» № 4,1993 г., № 1, 1994 г.Памяти заключенных спецтюрьмы ЦКБ-29 НКВДМаксимилиан САУККЕ МоскваВетер перемен 1985 г. позволил слегка приоткрыть завесу секретности над истиной. Центральный архив КГБ разрешил знакомиться с делами
Рабы системы
Рабы системы Максимилиан САУККЕМоскваПамяти заключенных спецтюрьмы ЦКБ-29 НКВДЖурнальный вариант главы из рукописи "Неизвестный Туполев"Шла вторая половина 1937 г. Главный инженер ГУАП и руководитель ведущего ОКБ по самолетостроению Андрей Николаевич Туполев был полон
8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ
8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ Электроэнергетические системы (ЭЭС) современных гражданских судов и военных кораблей являются сложными комплексными системами, в которых нашли применение новейшие достижения практически во всех областях науки и техники
2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления
2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления Все 3 отсека корабля Apollo – командный отсек, служебный отсек и лунный корабль – имеют самостоятельные реактивные системы управления (рис. 21.1). Рис. 21.1. Корабль Apollo: 1 – лунный корабль; 2 –
23. Система с тройной эвтектикой и практически полным отсутствием растворимости компонентов в твердом состоянии; изотермические и политермические сечения
23. Система с тройной эвтектикой и практически полным отсутствием растворимости компонентов в твердом состоянии; изотермические и политермические сечения Диаграммы состояния двойных сплавов строят на плоскости: по оси абсцисс откладывают концентрацию компонентов, по
5.4 Проектирование системы
5.4 Проектирование системы Разработчик должен принимать участие в проектировании системы. Если систему разрабатывают для нескольких различных построений, то ее проект не может быть полностью определен до завершения всех построений. Разработчик должен идентифицировать