У порога орбитальных заводов
У порога орбитальных заводов
Рождение новых профессий
На огромной световой карте земного шара в главном зале Центра управления полетом едва заметно для глаза перемещается зеленоватое пятно. Оно отображает движение орбитального комплекса станции «Салют-6» — «Союз-27» с космонавтами Ю. Романенко и Г. Гречко на борту. Совсем рядом со светящейся линией его орбиты ползет другое — розоватое — пятнышко! Так выглядит на карте автоматический грузовой корабль «Прогресс-1». Сейчас должна произойти их стыковка. Внимание… Есть! Две точки на экране слились…
«Эка невидаль, — скажет искушенный в космонавтике читатель. — Кого теперь удивишь стыковкой на орбите? Были уже всякие: и двух автоматов, как в октябре 1967 года, когда состыковались „Космос-186“ и „Космос-188“, и беспилотного корабля „Союз-20“ со станцией „Салют-4“, летевшей в автоматическом режиме, в ноябре 1975 года, а стыковкам с участием космонавтов вообще потеряли счет».
Что ж, все верно, и тем не менее стыковка, которая произошла 22 января 1978 года в 13 часов 12 минут московского времени, особая. Впервые в истории космонавтики с помощью автоматического корабля была осуществлена транспортная операция по доставке на пилотируемую орбитальную станцию топлива для дозаправки двигательных установок, оборудования, аппаратуры и материалов для обеспечения жизнедеятельности экипажа и проведения научных исследований и экспериментов. Но так ли уж необходимо все это в космической работе?
Судите сами. На борту станции довольно значительны расходы, связанные с научными исследованиями. К примеру, уменьшается запас фото- и кинопленки, его нужно восполнять. Уже во время полета возникают идеи новых экспериментов, а подходящих приборов с собой нет. На станции сотни агрегатов и узлов, из которых иные выходят из строя при многомесячной работе. Причем обычно заранее известно, что и когда надо менять, так как у отдельных из них срок службы меньше, чем длительность работы всей станции. Могут быть, конечно, и какие-то непредвиденные отказы, тогда необходим ремонт. Еще одна статья расходов — это топливо, которое уходит на маневры во время научных экспериментов. И наконец, потребности обеспечения жизнедеятельности экипажа. Периодически приходится обновлять атмосферу станции, заменять регенераторы, выделяющие кислород, — они изнашиваются. Нуждаются в обновлении и фильтры — поглотители различных примесей в воздухе. И емкости для отходов тоже нужны, и многое другое. Если подсчитать все необходимое, то «расходы» на станции составляют 20–30 килограммов в сутки. Вместе с космонавтами на «Союзе» везти запасы на два-три месяца работы очень сложно. А если на год? Это уж чуть ли не десять тонн груза. Вот и выходит, что без такого транспортного корабля, как «Прогресс», обойтись невозможно.
На следующий день после стыковки началась разгрузка «Прогресса». И тут в Центре управления возникло оживленное обсуждение характера новой профессии космонавтов, рождавшейся на наших глазах. В очередном сеансе связи оператор так и спросил у экипажа:
— «Таймыры», кем вы сейчас себя чувствуете? Кто вы — грузчики, такелажники?
— Мы докеры, — весело ответил Г. Гречко.
— Согласен с бортинженером — докеры, пожалуй, точнее. Все-таки разгружаем корабль, да и вокруг — океан, хотя и звездный, — добавил Ю. Романенко.
Казалось бы, что особенного — взял один контейнер, перенес его в станцию, установил где надо, а в корабль переправил тот, что отработал свое. Однако в условиях невесомости подобная операция очень непроста. Во-первых, при разгрузке каждую секунду нужно быть настороже, иначе груз потянет тебя куда-нибудь в сторону. Во-вторых, работать приходится с предельной осторожностью: в невесомости массивный контейнер превращается в «снаряд», который способен повредить оборудование станции. Так что в специальных бортжурналах с названием «Разгрузочно-погрузочные работы» совсем нелишне указано: «Избегать неконтролируемого дрейфа блоков и оборудования, передавая их из рук в руки. Оберегать переносимые блоки от удара об элементы конструкции, особенно о пульты».
Объемистые эти журналы! Несколько десятков страниц. Определен в них весь порядок работ по разгрузке «Прогресса», продуманы мельчайшие детали. А грузовой отсек автоматического корабля — это 6,6 кубического метра. На специальных рамах-стеллажах размещено почти полторы тонны весьма разнообразных грузов. Есть среди них как легкие, так и очень тяжелые — на космодроме при загрузке отсека пользоваться пришлось даже подъемными кранами. Для съема оборудования были разработаны специальные приспособления и инструменты, которые теперь все космонавты осваивают в обязательном порядке. А это значит, что в их многообразной испытательной и исследовательской деятельности появилась новая грань — регулярная производственная работа, и не только «космическими докерами»…
Именно «Прогресс-1» среди прочих грузов доставил на «Салют-6» оборудование, с помощью которого был начат обширный комплекс технологических экспериментов на орбите. На этот раз Ю. Романенко и Г. Гречко, а потом и все, кто побывал на «Салюте-6», поработали в космосе еще и заправскими металлургами. В их распоряжении была, в частности, установка «Сплав-01», которая состоит из электронагревательной печи ампульного типа и миниатюрного компьютера, управляющего тепловым режимом.
Установка поступила в разобранном виде. Космонавты сами ее смонтировали, разместив печь в шлюзовой камере, через которую обычно сбрасываются бытовые отходы. У камеры два люка: один открывается внутрь станции, другой — наружу. Через специальные герметические разъемы печь соединили с пультом управления в рабочем отсеке. После этого вложили в печь три ампулы с образцами, закрыли внутренний люк шлюзовой камеры и открыли наружный, чтобы плавка проходила в космическом вакууме. Оставалось набрать на пульте управления заданную программу и… лечь спать.
Не улыбайтесь, читатель. Лечь спать — это тоже непременное условие эксперимента. Дело в том, что на борту космического корабля или станции абсолютной, так сказать, невесомости не бывает. Различные маневры с включением двигателей, даже просто передвижение космонавтов внутри помещений или, скажем, занятия физическими упражнениями на «бегущей дорожке» приводят к нарушениям «гравитационной тишины», как говорят специалисты. Конечно, возникающая при этом «тяжесть» неощутима для человека, но даже такие ничтожные ускорения в тысячи, десятки тысяч раз меньше единицы способны влиять в космосе на структуру образцов. В этом ученые убедились из предыдущих опытов. Ведь уже пробовали на орбите плавить, сваривать, паять и резать металлы, выращивать кристаллы, получать растворы, отливать близкие к идеальным шарики. Результаты не только обнадеживали и вдохновляли, но и частенько обескураживали. И это понятно: путь в неизведанное тернист и извилист. Но человек, не останавливаясь ни перед какими трудностями, задумывает новые эксперименты, намечает новые планы приобщения неземного к своим земным потребностям.
Напомню слова академика Б. Патона: «Когда-нибудь заработают заводы в космосе, где существуют постоянно такие „производственные условия“, каких на Земле либо вообще нельзя достичь (длительная невесомость), либо они неоправданно дороги (глубокий и чистый вакуум, резкие перепады температур, радиация). Не исключено, что эксперименты на орбитальных станциях по изысканию новых материалов и конструктивных элементов помогут обнаружить и неожиданные эффекты, которые расширят наши представления в материаловедении, металлургии, физике и принесут неоценимую пользу повседневной практике на Земле».
Понятно желание уже сегодня получить определенные и весомые результаты. Но наука — это прежде всего кропотливая и долгая работа, широкий поиск. Они обязательно приведут к открытию новых путей в космической технологии, правда, вовсе не исключено, что неожиданный успех придет сразу. Однако в создании космической индустрии рассчитывать лишь на одну удачу не приходится.
Конечно, значение работ, подобных тем, что вели с установкой «Сплав-01» на орбите советские космонавты вместе со своими коллегами из социалистических стран, пока чисто научное. Но уже совсем не абстрактное, а вполне конкретное. Каждый следующий эксперимент, каждый следующий шаг приближают нас к тому будущему, когда на околоземных орбитах начнется промышленное производство материалов и сплавов, которые очень трудно или вовсе невозможно получить на Земле.
Ну а что же может космос?
Под «солнечным ветром»
Есть в Москве на Ленинских горах место, где Луна так близка, что ее можно потрогать. Конечно, такое проделать на самом деле не удастся, и все же сознание того, что рядом, за стенами здания с вывеской «Институт геохимии и аналитической химии имени В. И. Вернадского», находится кусочек нашей ближайшей соседки по космосу, никого, по-моему, не оставляет равнодушным.
В этом «лунном доме» была вскрыта первая капсула с первым грунтом, доставленным советской автоматической станцией «Луна-16» из Моря Изобилия. Сюда же привозили подобные капсулы с «Луны-20», «Луны-24». Здесь в одном из отсеков лаборатории — «лунный склад». В специальных контейнерах хранятся бесценные образцы, среди которых есть и «лунные камни», собранные на Луне американскими астронавтами. Не музейными экспонатами стоят они в боксах. Их изучение ведется постоянно: в лунном мире так много еще непознанного, таинственного.
В лабораторию обращались за советом конструкторы, создавая новые аппараты для исследования Селены. Много месяцев работали среди морей и гор советские луноходы, и мы удивлялись их неутомимости и отличным ходовым качествам. Но они стартовали с Земли лишь после того, как ученые передали конструкторам данные о механических свойствах лунного грунта, о нехоженой поверхности Луны, по которой предстояло путешествовать космическим автоматам.
Лунная лаборатория напоминает миниатюрный завод. Здесь можно взвешивать вещество и распиливать его частицы, проводить рентгеновский анализ и измерять магнитные свойства. И когда этот «завод» заработал на полную мощность, ученые столкнулись со многими неожиданными вещами. Об одной из них и пойдет речь.
Сколько сейчас различных металлов в человеческом обиходе? Наверное, можно подсчитать, но, думаю, и так ясно: много. А сколько люди теряют металла ежедневно, ежечасно из-за коррозии? Точное число назвать не берусь. Однако в одном из своих выступлений академик Я. Колотыркин привел такой факт: в развитых странах коррозия «пожирает» ежегодно около десятой доли национального дохода. В масштабах нашей страны это многие миллиарды рублей.
Коррозия, словно раковая опухоль, возникая, неумолимо распространяется по всему телу металлических изделий, будь то корпус судна или кузов автомобиля, водопроводные трубы или стенки атомных реакторов. С коррозией борются. Разрабатывают различные покрытия, ищут способы замены металлов стойкими пластмассами и даже стеклом, используют так называемые ингибиторы коррозии. Но все эти меры либо слишком дороги, либо недостаточно эффективны. Металлы продолжают ржаветь. Так на Земле. А вот на Луне…
Чистое железо в лунном грунте — реголите — обнаружили сразу. Оно покрывает тончайшей (в одну десятую микрона!) пленкой большую часть его поверхности. Ученые предположили, что стоит этому самому лунному железу оказаться в земных условиях, то оно тут же окислится. Сомнений, в общем-то, не было, но решили убедиться на опыте: извлекли кусочек реголита из камеры, где он хранился в «космической среде», и оставили на воздухе. Прошла неделя, другая, месяц, потом почти четыре месяца, а приборы неизменно отмечали, что лунный металл не окисляется, не сгорает.
«Не может быть, — сказал академик А. Виноградов, когда ему сообщили об этом сюрпризе. — Проверьте еще раз и найдите свою ошибку. Это же элементарно: железо, да еще в такой степени измельченное должно неизбежно сгорать».
Эксперименты повторяли снова и снова. И с той же настойчивостью лунный грунт «сигналил» о наличии чистого, неокисленного металла.
О странном поведении реголита академик А. Виноградов упомянул в докладе о предварительных результатах исследований на Президиуме Академии наук СССР. Академик М. Келдыш, который вел заседание, заметил: «Если вы поймете, как получается на Луне такое железо, и научите нас его производить в земных условиях, то это окупит все расходы на космические исследования». Он распорядился не жалеть лунный грунт для исследований, помог привлечь к ним широкий круг специалистов из других исследовательских учреждений.
К работе приступили сотрудники Института геохимии и аналитической химии имени В. И. Вернадского АН СССР, Института общей и неорганической химии имени Н. С. Курнакова АН СССР, Института геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР и несколько позднее — Института металлофизики АН УССР…
Опыт повторялся многократно у нас, а затем и в США. В рентгеновских фотоэлектронных спектрометрax тончайшим слоем наносился на своеобразную мишень лунный реголит. Его подвергали рентгеновскому облучению и последующему анализу. Все эксперименты убедительно подтверждали: в лунном реголите есть чистое железо. Пробовали исследовать его на разных установках. Не сразу был получен нужный результат. Выяснилось, что чистые металлы лежат на самой поверхности, в самом верхнем и тонком слое крупинок грунта. Вот почему столь вроде бы очевидное отыскивалось долго и трудно.
Парадоксально, но факт: на поверхности можно «запрятать» секрет гораздо надежнее, чем в глубине. Так и сделала природа с лунным реголитом. Чистое, восстановленное железо занимает здесь тончайший слой толщиной порядка 20 ангстрем. Дальше обыкновенные окислы. Если сравнить с земными образцами, где сверху коррозия, а под ней — чистый металл, то на Луне все наоборот. Как только начинают «прощупывать» приборами атомы, лежащие чуть глубже этого таинственного слоя, то никаких чудес — обыкновенная картина окисленного металла. Преподнесли сюрприз и американские образцы лунного грунта, изученные в советских институтах. Они оказались подобными слоеному пирогу: железо — окислы — железо. Почему? Пока ученые лишь строят гипотезы.
Но вернемся к работам Института металлофизики. Анализ поверхности реголита не только подтвердил результаты предыдущих исследований по железу, но принес и новые: установлена аналогичная неокисляемость в земных условиях лунного титана и кремния. Так родилось открытие, внесенное в Государственный реестр под номером 219: «Свойство неокисляемости ультрадисперсных форм простых веществ, находящихся на поверхности космических тел». Науке стало известно, что чистое железо, титан, кремний, доставляемые с Луны, не окисляются и на Земле.
Естественно, ученых заинтересовал вопрос: почему это происходит? Стали моделировать лунные условия: земные материалы подвергали резким перепадам температур в вакууме. Железо восстанавливалось, но ненадолго. Затем бомбардировали их протонами. Железо и титан восстанавливались, а кремний — нет. Наконец «обстреляли» ядрами аргона и получили желаемый результат: все три элемента не только восстановились, но и впоследствии не окислялись в атмосфере.
Итак, на вопрос: «Чем закаляются металлы от коррозии?» — последовал ответ: «Солнечным ветром».
Солнечный ветер… Не правда ли, поэтическое название нашли ученые потоку частиц, несущихся от нашей звезды? Именно этот ветер поможет будущим космическим каравеллам путешествовать в пространстве — есть почти фантастические проекты таких «парусников» для вселенной. Но в нашей истории солнечный ветер играет совсем иную роль — он превратился в металлурга.
Покрывающий поверхность Луны реголит — это смесь обломков пород, минералов, стекол, спеков, образовавшаяся под действием метеоритного дождя и потоков заряженных частиц. И чтобы объяснить, как появилось железо, надо учесть все факторы. Предположим, ударяется о поверхность Луны железный метеорит. Взрыв. Метеорит испаряется, вещество затем начинает конденсироваться. Может ли при этом появиться железо? Без сомнения. И свидетельство тому — лунные стекла и спеки, где отмечается наибольшая концентрация неокисленного железа.
Теперь о солнечном ветре, а точнее, о протонах, которые в нем содержатся. В одном случае они выбивают с поверхности частиц реголита летучие элементы, снижают в ней количество кислорода. Это, так сказать, физическое воздействие солнечного ветра. Но в реголите идут и химические процессы, и, вероятно, они играют решающую роль.
Теория, даже весьма убедительная, требует экспериментальной проверки. Чтобы доказать, насколько расчеты верны, нужно в земных лабораториях имитировать лунные условия и получить то самое железо, рождение которого столь необычно.
Земные базальты схожи с лунными породами. Их и взяли объектом экспериментов. Однако на пути исследователей встали огромные трудности. Вакуум, который удалось получить в установках, моментально «загрязнился». Ученым удалось получить лишь ничтожное количество «лунного железа». Началось моделирование воздействия солнечного ветра на металл. Пластинки подвергали интенсивной атаке ионами аргона. Коррозионную устойчивость металла удалось повысить.
Это были годы поисков и сомнений, удач и разочарований. А в лаборатории лежали образцы реголита, привезенного в 1970 году «Луной-16», а затем «Луной-20» и «Луной-24». Проходили месяцы и годы, но содержание в них неокисленного железа не уменьшалось. И этот немой представитель Луны заставлял искать пути к тайне.
Возникали предположения: а может быть, все гораздо проще? И если взять чистое земное железо, оно в этих условиях тоже не будет окисляться? Изготовили тонкие пластинки из сверхчистого железа. Поверхность их тщательно отполировали. Но прошло совсем немного времени, и выяснилось, что пластинка покрылась тончайшим слоем окисла. А лунное железо по-прежнему оставалось устойчивым, словно не на Земле оно находилось.
Наверное, удалось бы раньше получить конечные результаты, если проводить опыты в космосе, на борту станций или спутников. Природа работает в чистейшем вакууме, а воссоздать его в лабораториях и одновременно экспериментировать в нем необычайно сложно. И все же многолетние исследования большого коллектива смогли преодолеть, казалось бы, непреодолимые препятствия. Разобрались, почему и каким образом рождается лунное железо. В нем нет «центров окисления», а процесс коррозии словно цепная реакция: стоит ему начаться в одном месте — и он распространяется на весь металл. Опыты показали, что можно улучшать коррозионную стойкость металлов, если обрабатывать их пучками ионов.
Вот перед нами диск из нержавеющей стали. На нем написано: «Луна». Только надпись на диске подверглась атаке ионных пучков. Затем ученые поместили диск в пары «царской водки» — смесь крепких кислот, — через 15 минут он покрылся ржавчиной, а слово «Луна» сияло первозданной чистотой.
Дипломом на открытие отмечена большая группа ученых. Это итог сделанного и одновременно рождение нового направления исследований. В некоторых областях техники очень эффективно использовать обработку металла ионными пучками, в частности в электронике, в приборостроении. Пока рано говорить о широком применении этого метода — еще предстоит создавать специальную аппаратуру, искать новую технологию. Не исключено, что со временем и в космосе ионные пушки будут обрабатывать металлические детали, которые потребуются для космических сооружений…
Ну а появятся ли на Земле металлургические заводы, производящие «лунное железо»? В принципе такой завод легче построить на Луне или в космическом пространстве, где есть необходимый вакуум «в неограниченном количестве», но… Впрочем, для нас это трудно, а детям и внукам нашим подобное строительство может оказаться необходимым и столь же привычным, как для нас сегодня сооружение гидростанций.
И кто знает, может быть, не так уж далек день, когда наряду с овеянной легендами индийской колонной из «чистого» железа появятся на Земле корабли с нержавеющими корпусами, не поддающиеся коррозии металлические трубы и атомные реакторы, и все это без всяких защитных покрытий. Металл убережет солнечный ветер.
Да, Луна может подарить богатства несметные. Ведь победа над коррозией сулит человечеству гораздо больше, чем если бы все лунные экспедиции установили, что на Селене есть золото. Показательно, что на одной из научных конференций в Хьюстоне американские специалисты признали: открытие советских ученых — это наиболее значительное из всего, что дала Луна на сегодня человечеству.
Без участия тяжести
Между прочим, одним из первых, кто задумался над этим вопросом, был К. Циолковский. И не только задумался, но и попытался ответить. В его труде «Грезы о Земле и небе и эффекты всемирного тяготения», изданном в Москве в 1895 году, одна из глав так и называлась: «Описание разных явлений, происходящих без участия тяжести». Великий пророк космонавтики первым обратился к процессам, которые могут протекать в невесомости.
Любопытно, что внимание современных материаловедов и технологов длительная невесомость не привлекала к себе даже после того, как успехи практической космонавтики ошеломили человечество. Понадобились сотни полетов автоматических и пилотируемых аппаратов, чтобы вызвать интерес к исследованию производственных процессов вне Земли. В результате первый технологический эксперимент в космосе был поставлен лишь в 1969 году. На борту корабля «Союз-6», в его орбитальном отсеке, установили сварочный агрегат «Вулкан», разработанный специалистами Института электросварки имени Е. О. Патона АН УССР. Во время полета бортинженер В. Кубасов, разгерметизировав отсек, включил агрегат и попробовал три вида сварки — электронным лучом, сжатой дугой и плавящимся электродом. Так было положено начало экспериментальной космической технологии.
Затем последовали другие запуски советских и американских аппаратов и кораблей. Были продолжены исследования возможностей осуществления на орбите различных технологических процессов, производства веществ и материалов с необычными свойствами и характеристиками. Теперь перспективы в этой области волнуют воображение. Конкретные технические проблемы космической технологии обсуждаются на совещаниях и симпозиумах. Конструкторы создают особые инструменты и оборудование для космического производства. Словом, сегодня будущее индустрии уже невозможно себе представить без участия таких помощников, как космический вакуум и невесомость.
Говорят, железные перила набережной Фонтанки в Ленинграде впервые покрасили в 30-е годы нашего века. А ведь отливали их еще до рождения А. Пушкина. Около двух столетий ничего не могла поделать ржавчина с этим железом. Специалисты объясняют удивительную его стойкость, в частности, и тем, что в нем почти нет таких примесей, как сера и марганец. Или еще один пример. На окраине индийской столицы вот уже более пятнадцати веков возвышается семиметровая железная колонна, на которой не найти никаких следов коррозии. И это в условиях влажных тропиков. Секрет, как уверяют материаловеды, состоит в том, что колонна на 99,8 процента состоит из чистого железа.
Сейчас научились получать не просто чистые — чистейшие металлы. Есть, например, образцы, содержащие 99,9999 процента железа, или, как говорят специалисты, чистотой в шесть девяток. Оно не вступает в химические реакции даже с кислотами, остается податливым в обработке, мягким, а не хрупким, даже при температуре 200 градусов ниже нуля.
По мере повышения «чистоты» различных веществ росло и количество обнаруживаемых или неожиданных свойств. Цинк чистотой в пять девяток не вступает в реакцию с кислотой. Сверхчистый вольфрам приобретает высокую пластичность: при температуре до 700 градусов его можно вытянуть в проволоку диаметром в сотую долю миллиметра или раскатать в фольгу. Когда медь освобождают от примесей висмута, она теряет хрупкость. Сегодня радиоэлектроника, химическая и атомная промышленность, машиностроение, многие другие отрасли народного хозяйства испытывают всевозрастающую потребность в высокочистых беспримесных материалах. Шесть-восемь девяток — вот какой чистоты нужны уран, торий, графит, бериллий в ядерной технике. Не меньшие требования к материалам в ракетно-космической технике.
Придумано немало способов очистки материалов в земных условиях. Но почти все они требуют создания космического вакуума, а на Земле это сопряжено с решением труднейших научно-технических проблем, с крупными затратами материальных средств. При переносе же в космос появляется возможность в комплексе использовать сразу два таких важных фактора, как невесомость и глубокий вакуум.
Существующие способы очистки привели, как считают специалисты, ко второму рождению материалов. Ну а если у самых чистых сегодня металлов, полупроводников, изоляторов удастся уменьшить примеси еще в десятки и сотни раз, не возродятся ли они в третий раз, проявив невиданные доселе свойства? Вот почему материаловеды так заинтересовались в пополнении фонда сверхчистых веществ. И в этом поиске космическая продукция призвана сказать свое слово. Она поступит в лаборатории химиков и физиков, фармакологов и биологов, металлургов и оптиков.
Необычные свойства приобретают вещества не только за счет сверхчистоты своего состава. Не меньшее значение имеет и совершенство внутренней структуры материала. Например, в металлах границы между кристалликами — самое уязвимое место. Именно там образуются микротрещины. Но если материал представляет собой единое целое или монокристалл, то в нем нет никаких границ. Поэтому его прочность близка к предельной, зависящей лишь от силы сцепления атомов. В 30-х годах ныне академики А. Александров и С. Журков, измерив прочность на растяжение кварцевых нитевидных кристаллов, получили поразительные результаты — 1300 кг/мм2. Это почти в десять раз больше, чем предел прочности высококачественной стали. Оказалось, чем тоньше нитевидные кристаллы, тем они прочнее. Волокна из сапфира, например, выдерживают усилия до 2000 кг/мм2.
Такие сверхпрочные нити технологи хотели использовать в так называемых композиционных материалах — композитах, где они играют роль своеобразной арматуры. Однако в земных условиях не удается вырастить длинные нити: под действием тяжести они гнутся, ломаются на отрезки, не превышающие нескольких миллиметров. В космосе же нет принципиальных ограничений для получения кристаллических нитей любой длины и выращивания монокристаллов значительных размеров.
В экспериментах на орбите уже удалось вырастить гораздо более крупные и совершенные кристаллы, чем в лабораториях на Земле. К тому же в невесомости они растут быстрее. Вот, скажем, перспективным материалом в полупроводниковой технике считается соединение, состоящее из атомов кадмия, ртути и теллура. Из такого материала можно изготовить эффективные фотоприемники инфракрасного излучения. Диапазон их «зрения», как полагают специалисты, был бы очень широк — от 1 до 35 микрометров (мкм). Напомню, что существующие сейчас электронно-оптические преобразователи принимают ИК-излучение с длиной волны лишь до 8 мкм. Но вот получить однородные монокристаллы такого соединения, у которых составные элементы распределялись бы равномерно по всему объему, никак не удавалось. Попытались это сделать Ю. Романенко и Г. Гречко на станции «Салют-6». Они расплавили, а затем охладили твердый раствор «кадмий — ртуть — теллур». Результаты порадовали специалистов: монокристалл образовался с неплохой однородностью, без пор. Конечно, потребуются новые эксперименты, чтобы отыскать пути к полному успеху. Однако эти трудности преодолимы.
Сейчас все большее распространение в технике получают системы волоконной оптики. Один из основных элементов этих систем — световод — тонкая стеклянная нить. Луч, войдя в один конец световода, как вода в трубе, распространяется внутри его, многократно отражаясь от его внутренних стенок, выходит из другого. Такую трубку-волокно можно буквально завязать в узел. С помощью световых, то есть весьма коротких электромагнитных волн, по световоду можно передавать гораздо больше информации, чем, скажем, посредством радиоволн. Световод толщиной в одну сотую миллиметра, как уверяют специалисты, вполне способен обеспечивать прохождение сразу 12 телевизионных программ или сотни тысяч телефонных переговоров. Если вместо обычных проводов на современном самолете применить стекловолоконные, это уменьшит в несколько раз вес радиосвязного оборудования. Словом, у волоконной оптики заманчивое будущее. Дело только за технологами — от них ждут подходящих стеклянных нитей. Но получить их непросто.
Качество световода зависит от точности соотношения между диаметрами стержня и оболочки, а также между их показателями преломления. Попадись на границе раздела неоднородности, превышающие по размеру длину волны света, — и хорошего световода не получится. Такое же нежелательное влияние оказывает и загрязнение стекла тяжелыми ионами, парами воды. Уберечься от этих «технологических врагов» в земных условиях чрезвычайно трудно. А вот в космосе справиться с ними проще. В невесомости легче удалить ненужные примеси при бесконтейнерной плавке и выравнивать диаметры за счет преобладающей роли сил поверхностного натяжения в расплаве стекла.
Надо сказать, что технология получения стекла очень сложна. По этой причине и космические эксперименты со стеклом пока еще довольно редки. В марте и декабре 1976 года при запуске советских высотных ракет впервые проделали опыты с плавкой стекла. Через два года на борту космического комплекса «Салют-6» — «Союз-29» — «Союз-31» летчик-космонавт ГДР З. Иен провел плавку специального оптического стекла, которая длилась 20 часов, на установке «Сплав-01». Исследования полученных образцов, по мнению технологов, принесли любопытные и ценные данные. Таковы первые шаги. И все же специалисты уверены, что в орбитальном литейном цехе удастся производить тонкие и очень длинные стеклянные нити, которые на Земле неизбежно разрываются от собственной тяжести, не успев затвердеть. Так что стеклопроводы длиной в сотни метров будут сугубо космической продукцией. Разумеется, это не придет само. Космос не слишком охотно открывает свои секреты. Вспомним хотя бы поучительную историю с попыткой получить на орбите идеальные шарики.
Начну с такого интересного явления: капля жидкости в невесомости свободно висит в пространстве, ни на что не опираясь, и при этом непременно принимает форму шара. Кстати, образуется не просто жидкий шар, а сверхточный. Под действием сил поверхностного натяжения его форма близка к абсолютной сфере. Например, по расчетам для капли расплавленного алюминия, находящейся на высоте 320 километров от Земли, отклонения от идеала составят какие-то десятимиллионные доли процента. Это в тысячи раз меньше, чем существующие допустимые нормы для шарикоподшипников.
Современные литейные формы и прокатные станы, штампы, режущие и шлифовальные инструменты не в состоянии сделать шарики так близко к абсолютной сфере, если, конечно, не идти на непомерные затраты времени и средств. Между тем отклонения от идеальной формы вызывают биения, особенно при высоких оборотах вращения. И они — одна из главных причин износа подшипников. Расчетная долговечность шариковых подшипников, скажем, трамвая, грузовых автомобилей, токарных, фрезерных и некоторых других станков не превышает 20 тысяч часов — приблизительно два года непрерывной работы. У стационарных молотилок в пять раз меньше, а в комбайнах и вовсе около полутора месяцев. Согласитесь, этого явно недостаточно. Неудивительно, что технологи в одном из первых своих экспериментов на орбите решили прежде всего попробовать выплавить идеальные шарики.
Казалось, все предельно ясно, и удача сама упадет в руки. Может быть, поэтому опыт решили не слишком усложнять — ведь и нужно-то было для начала лишь подтвердить столь очевидный принцип. Это был эксперимент «Сфера», который поручили провести космонавтам Б. Волынову и В. Жолобову на борту орбитальной станции «Салют-5».
В космос взяли заготовки из сплава Вуда, в который входят висмут, свинец, олово и кадмий. Он отличается низкой температурой плавления — чуть выше 60 градусов: удобное свойство — можно легко и быстро расплавить. И вот металл расплавили на борту станции. Поршнем его выдавливали из печи в лавсановый мешочек длиной около 30 сантиметров. Полагали, что жидкая масса, падая, успеет в таком пространстве оформиться и затвердеть, прежде чем прикоснется к стенке. И что же увидели, когда на Земле вскрыли мешок?
Перед обескураженными специалистами лежали совсем не шарики и даже не горошины, а бесформенные, хотя и округлые, кусочки металла. Их поверхность удручала еще больше: она вся была покрыта хаотически расположенными волокнами. «Какой-то еж-уродец», — прокомментировал В. Жолобов. Как показал анализ, внутренняя структура образца в результате переплава на орбите тоже сильно изменилась: нарушилось равномерное распределение компонентов по объему, образовались отличающиеся по составу иглообразные кристаллики и т. д. Попробовали в лаборатории подобрать условия плавки, при которых получились бы сходные структуры — ничего не вышло. Добавлю, что и в эксперименте «Универсальная печь», проведенном в совместном советско-американском полете «Союз» — «Аполлон», было обнаружено аналогичное ухудшение однородности сплава. Объяснения столь странному итогу космической плавки ученые пока не находят — нужны дальнейшие исследования. В общем, атака в лоб себя не оправдала, значит, нужна планомерная, упорная осада.
В конце концов, лично я не сомневаюсь в том, что космическое производство идеальных шариков будет налажено. Да еще каких — полых. О таких шариках, к примеру, для подшипников, на которых вращаются роторные винты вертолетов, давно мечтают авиационные инженеры. Сейчас полые шарики сваривают из двух половинок, но шов остается слабым местом. А если сделать их из сплошного куска металла, то подшипники станут в пять-восемь раз долговечнее. Так считает академик Б. Патон.
В принципе космическую технологию изготовления подобных шариков можно представить следующим образом. Внутрь жидкой капли металла под давлением впрыскивают газ. После ввода шприца отверстие затягивается, пузырь под действием сил поверхностного натяжения занимает центральное положение, образуя шар. Расплав затвердевает, и газ оказывается замурованным. Вот и готов полый шар. Он гораздо прочнее сплошного: под нагрузкой он упруго деформируется, форма и целостность его не нарушаются.
Расчеты показывают, что в космосе можно из жидких металлов выдувать не только небольшие пустотелые шарики, но и огромные тонкостенные оболочки. Да если дать в руки конструкторов такую возможность, то, наверное, строительство больших орбитальных станций будет выглядеть совсем не так, как это представляют сегодня.
Скажем, несколько оболочек, пока они еще жидкие, объединяют в подобие гигантской пены. Когда она затвердеет, то получится единое целое, без швов и стыковочных узлов. Отдельные ячейки останется лишь превратить в помещения станции, разместив в них соответствующее оборудование.
Накладывая пленки из жидких металлов на каркас любой конфигурации, можно изготавливать на орбите конструкции бесконечно разнообразных форм. Как знать, не они ли станут основой космической архитектуры будущего?
Однако давайте теперь, поговорив о «воздушных замках» из металлизированной пены, спустимся на Землю. Между прочим, здесь пеноматериалы уже давно не фантастика. Например, пенобетон. Его производят сейчас в значительных количествах и все шире используют в строительстве. Еще бы, он не уступает железобетону по прочности, но вдвое легче. Кроме того, пенобетон обладает высокими теплоизоляционными качествами. Вот вам подтверждение того, насколько необычными свойствами наделены твердые пористые материалы, даже когда у них далеко не идеальная внутренняя структура.
А если воспользоваться условиями космоса, где устойчиво существуют жидкие пены из любых материалов? Ведь это все равно что открыть дверь в мир совершенно невероятных материалов. Например, стальной брусок, изготовленный в невесомости и на 87–88 процентов наполненный газом, будет плавать в воде, как дерево. Крыло самолета из подобного материала получит свойства нержавеющей стали и плотность алюминия. И это только за счет того, что в невесомости пузырьки газа в расплаве металла не всплывут и не осядут, так как нет гравитационного притяжения Земли, а равномерно распределятся в его толще.
Инженеры-технологи уже прикидывают подходящие способы изготовления пеноматериалов в космосе. В одном из вариантов предлагают расплавленный металл и газ подавать в вакуумную камеру одновременно. Другой метод посложнее, он требует перемешивания по мере подачи газа. Правда, технологи опасаются, что при этом пузырьки газа начнут сливаться, ухудшая тем самым качество материала. Еще один способ предусматривает введение газа в металл под высоким давлением и быструю подачу смеси в вакуумную камеру. Резкое падение давления вызовет появление пузырьков, которые равномерно вспучат жидкость, подобно тому как это происходит, когда открывают бутылки с шампанским.
Так обстоит дело с пеноматериалами, в которых успешно сочетаются столь непохожие друг на друга газ и твердое вещество. А если взять сплавы, где составляющие взаимно растворимы? Казалось бы, невесомость не в состоянии улучшить процесс их получения. Ведь главное здесь — непрерывное перемешивание. Именно оно способствует лучшему растворению одного расплава в другом. Однако при изготовлении сплавов из компонентов, существенно отличающихся своей плотностью, возникают немалые трудности. Стоит прекратить перемешивание, как при охлаждении жидкости расслаиваются. Механические, электрические и многие другие качества сплава резко ухудшаются. В итоге на Земле не удается получить отдельных сплавов с нужными свойствами.
Вот, например, так называемый ТН — сплав, состоящий из титана и никеля. Установлено, что он наделен… памятью. Если проволоке или листу из этого сплава придать какую-то форму, а затем, охладив, смять или сплющить, то при нагревании до прежней температуры искореженный кусок обретает первоначальную форму, как бы «вспоминает» ее. Нетрудно вообразить заманчивые перспективы использования такого рода материалов. Скажем, в космос или под воду доставляются в компактном виде конструкции и сооружения, а уже на месте они принимают заданные им размеры и формы.
Свойство своеобразной «памяти» обнаруживают и некоторые другие сплавы — золото с кадмием, медь с алюминием, марганец с медью. Список этот быстро растет. Да вот беда, на пути производства «памятливых» сплавов в земных условиях встают большие трудности. Составляющие их компоненты сильно различаются между собой. Никель, например, вдвое тяжелее титана. Академик А. Белов, возглавляющий Всесоюзный институт легких сплавов, сетует: «Самое трудное здесь — технология. Очень тонки, капризны режимы изготовления подобных сплавов». А вдруг в невесомости эти режимы окажутся не столь капризными? Или сами сплавы преподнесут металловедам еще более неожиданные эффекты. Во всяком случае, уверен, что эксперименты с этими замечательными материалами обязательно появятся в программе будущих полетов орбитальных научных станций.
Примеров того, что может космос в области создания новых материалов и чего ждут от него технологи, я мог бы привести множество. Но возникает резонный вопрос: насколько реальны все эти ожидания и надежды? Ведь даже отдельные имеющиеся удачи в получении на орбите новых материалов обходятся слишком дорого. Конечно, космические сплавы и кристаллы, а некоторые из них уже используются в действующих опытных установках и приборах, стоят пока недешево. Но эта первоначальная дороговизна не смущает технологов. Достаточно, например, напомнить о том, как промышленность осваивала алюминий. Еще в прошлом веке этот серебристый металл, добываемый из глинозема, который, что называется, «валяется под ногами», считался драгоценным: так велики были трудности его производства. Однако прошло время, появилась в достатке относительно дешевая электроэнергия, родилась технология выплавки алюминия методом электролиза. И вот результат — алюминиевая посуда стоит сегодня в любой кухне.
Сейчас специалисты считают, что уже на современном уровне развития космонавтики пора осваивать производство на орбите отдельных уникальных изделий. Предполагается, что через 10–15 лет оно станет вполне рентабельным.
Рассматривается, например, возможность изготовления в космосе кристаллов граната, применяемых в элементах памяти ЭВМ для улучшения их характеристик. По мнению зарубежных специалистов, потребности в этих кристаллах на 80-е годы оцениваются стоимостью более одного миллиарда долларов. Если часть из них покрывать за счет космического производства, то это составит весомую экономию. Особого внимания заслуживает организация производства на орбите некоторых новых сверхпроводящих сплавов с повышенной критической температурой или оптического стекла для мощных лазеров. Только за счет этого удалось бы буквально преобразить целые отрасли техники.
Думаю, к концу нашего столетия космическая индустрия будет развернута в самых широких масштабах. Если немного пофантазировать, то нетрудно себе представить целые заводы на дальних орбитах вокруг Земли — заводы необыкновенные! Это будут предприятия без крыш и полов, раскинувшиеся на немалых пространствах — этакий «рой» летящих по орбите промышленных установок, реакторов, устройств. А между ними снуют транспортные пилотируемые и автоматические грузовые корабли, доставляющие на орбиту сырье и вывозящие готовую продукцию. Но сначала все это надо будет построить. Вот почему именно космос станет самой большой мастерской человечества. И люди уже сегодня учатся в ней работать. Очень нелегки первые эти шаги.
Рабочие будни космоса
…Космонавт стоял на краю обрыва, у которого не было дна. Сверху, снизу и сбоку — та самая чернота, которая именуется космосом. Только отсюда она кажется еще гуще, еще суровее, чем из иллюминаторов орбитальной станции. «Салют-6» недвижно висел во мраке.
— Сейчас покажется Земля, — услышал В. Рюмин голос командира экипажа В. Ляхова. Тот страховал выход бортинженера из переходного отсека.
— Пока закреплюсь, — ответил В. Рюмин.
Он стоял на «крыше» станции, на специальной площадке, которую назвали «якорем», наверное, потому, что здесь установлены особые крепления для ног космонавта.
Земля неожиданно вынырнула из-за панели солнечных батарей, и сразу стало видно, как стремителен бег станции по орбите.
— Процесс идет штатно, — стараясь говорить медленнее, доложил В. Рюмин Центру управления полетом.
— Спокойнее, «Протоны», не торопитесь, — откликается Земля.
Первый этап выхода в открытый космос миновал. Теперь — небольшая пауза. Она предусмотрена программой, учитывающей опыт предыдущих пяти подобных операций. Космонавту нужно время осмотреться, привыкнуть к необычному восприятию окружающей его обстановки.
Начался второй этап. В. Рюмин снял панели с образцами материалов и, держась за специальные поручни, стал передвигаться вдоль корпуса станции. В. Ляхов вышел на «крышу» и стал на «якорь».
— Валерий идет к двигательному отсеку, — сообщил командир экипажа в Центр управления.
Солнце светит чуть сбоку. Теней нет, поверхность станции видна ясно и четко. Это обеспечено подбором ориентации «Салюта-6», рассчитанной заранее.
Все ближе подбирается В. Рюмин к злополучной антенне. Он взял с собой кусачки и специальный инструмент. Еще усилие, и вот десятиметрового диаметра зонт соскользнул в бездну. Космонавт отправился в обратный путь, к люку.
— Молодцы! — благодарит Центр управления.
Это произошло в самом конце 175-суточного полета В. Ляхова и В. Рюмина на борту «Салюта-6». Успешно проведя комплекс исследований с радиотелескопом КРТ-10, космонавты должны были сбросить его антенну, чтобы освободить второй стыковочный узел. Была подана команда, сработали пиропатроны, но антенна случайно зацепилась за один из элементов конструкции станции.
Сообщение об этом поначалу не вызвало никакого особого беспокойства ни на орбите, ни в Центре управления полетом. Никто не сомневался: достаточно легкого рывка станции — и проволочная сетка антенны отцепится. С помощью переносной телекамеры космонавты через иллюминатор показали специалистам центра строптивую антенну. «Не беда, — решили, — вот-вот сама отойдет». Но все же с Земли дали команду включить двигатели ориентации, чтобы слегка встряхнуть станцию.
Встряхнули — не помогло. Еще и еще раз включали двигатели. «Салют-6» раскачивался на орбите, но упрямая сетка по-прежнему тянулась за станцией. Что делать?
— Все без изменений, — передал В. Ляхов. — Нужен выход. Это мнение экипажа.
В Центре управления понимали, что возможен и такой вариант. Но это крайний случай. Ведь экипаж станции так долго работал в космосе и, конечно, устал. А выход в открытый космос — пока сложнейшая операция. Она требует не только тщательной подготовки, профессионального мастерства, мужества, но и солидного запаса физических сил, особой собранности. И вот сам экипаж предлагает провести незапланированный выход, заведомо подвергая себя трудному испытанию. Такое по плечу только людям беспредельной самоотверженности, глубоко преданным делу, своей профессии. Волнующие были минуты. Они словно озарились светом гагаринского подвига, с особой силой проявили истинную меру космических свершений.
Жизнь буднична по своей природе. Вот уже двадцать лет человек постоянно вносит деловую прозу и в ту «чистую романтику», какой поначалу считались космические полеты. Правда, и тогда говорили о работе в космосе, но назвать полет Ю. Гагарина просто рабочим нельзя. Это было не путешествие, а открытие, не работа, а подвиг.