На границе «Земля-космос»
На границе «Земля-космос»
Красота космических зорь
Первым увидел космическую зарю Ю. Гагарин. Все было необычно, ярко, впечатляюще. «Красота-то какая!» — только и смог он воскликнуть в восторге от увиденного. Слишком коротким было его путешествие на орбиту.
«На горизонте я увидел ярко-оранжевую полосу, над которой стали возникать все цвета радуги. Небо было таким, словно я глядел на него через хрустальную призму, — рассказывал после своего суточного рейса в космос Г. Титов… — Перед выходом корабля из тени Земли интересно было наблюдать за движением сумерек по земной поверхности. Одна часть Земли — светлая — в это время уже была освещена Солнцем, а другая оставалась совершенно темной. Между ними была четко видна быстро перемещавшаяся сероватая полоска сумерек. Над ней висели облака розоватых оттенков… Космос ждет своих художников, поэтов и, конечно, ученых, которые могли бы все увидеть своими глазами, осмыслить и объяснить».
Сложная цветовая гамма космической зари у Г. Титова вызвала уже не только восхищение красотой необычного зрелища — он почувствовал необходимость его осмыслить, объяснить. Может быть, это и был первый шаг к будущему открытию?
Но пока еще до него было далеко. Отправлялись на орбиту другие космонавты. И вот как они описывали сумеречный ореол планеты.
«Нижняя часть ореола, окрашенная в красно-оранжевые и желтые тона, переходит через белесую полосу к светло-голубым, темно-синим и черно-фиолетовым тонам» (В. Николаева-Терешкова).
«Последовательность окраски ореола в вертикальном направлении от линии горизонта такова: красно-оранжевые тона, желтые, светло-голубые, белесые, затем снова светло-голубые и синие и, наконец, белесоватые» (американские астронавты Д. Макдивит и Э. Уайт).
«От красно-оранжевых к желтым, голубым и белесым, затем опять голубые и белесые» (К. Феоктистов).
А. Леонов на борту «Восхода-2» не только описал игру красок в космосе, но и зарисовал их. Его картины реального и фантастического космоса известны многим. И наверное, многие же обращали внимание на сочность, какую-то необычайную яркость красок леоновских полотен. Действительно ли цвета в космосе настолько ярки? А может быть, это условия полета, особое эмоциональное состояние космонавта приводят к подобному преувеличенному их восприятию? Решив разобраться в этом, физиологи Е. Иванов и Л. Хачатурьянц провели специальный эксперимент во время полета П. Беляева и А. Леонова на корабле «Восход-2».
В бортжурнал космонавтов вклеили тестовые цветные полосы: красную, зеленую, синюю, голубую, пурпурную и желтую. Все цвета были высокой насыщенности и светлости. Рядом с этими полосами расположили еще одну, с черно-белыми ступенчатыми клиньями. Первый клин абсолютно белый, последний — черный. Известно, что все цвета по мере убывания их яркости приближаются к черному. Поэтому космонавту, а это был А. Леонов, предлагалось сравнивать яркость того или иного цвета с яркостью ступеней черно-белого клина сначала в лаборатории, потом в учебном космическом корабле и, наконец, в полете по орбите. И каково же было удивление специалистов, когда анализ полученных результатов показал, что яркость картин, написанных А. Леоновым, на четверть даже ниже реальной!
И вот я сам в космосе, не в воображаемом, а в натуральном, без подделки. Чисто теоретически, разумеется, представлял, с каким изобилием цветов и красок предстояло мне познакомиться, так сказать, воочию. Но то, что я увидел впервые собственными глазами, взглянув из иллюминатора корабля на земной горизонт, одновременно и потрясло, и ошеломило, и заворожило. Какое-то буйство красок! Богатство космической палитры поистине не поддается описанию. Никаких слов не хватит. Да что там слов! Думаю, попытки воспроизвести цветовую щедрость космоса не словами, а красками на холсте или бумаге тоже обречены на неудачу. Это не преувеличение. Мы пробовали прибегнуть к помощи Ленинградского института метрологии. Оттуда нам прислали все существующие в рамках ГОСТов цвета, всю, так сказать, земную палитру оттенков. Выбрав какой-нибудь один цвет, мы подбирали два наиболее близких его оттенка таким образом, чтобы между ними уже ничего нельзя было поместить, разумеется, из того, что имелось в нашем распоряжении на Земле. А в космосе между двумя этими оттенками умещалась еще целая гамма тончайших полутонов с едва уловимыми на глаз переходами. Словом, космос не просто первенствовал — он царил.
Если попытаться составить цветовой спектр из земных красок и космических, а затем их сопоставить, то первый напоминал бы грубо сколоченный из неотесанного горбыля забор, где щелей было едва ли не больше, чем досок. Второй же выглядел бы, как клавиатура рояля, где клавиши тщательно и точно подогнаны друг к другу.
Однако в полете мне предстояло не словами описывать и даже не красками запечатлевать открывающийся с орбиты вид на земной горизонт, а фотографировать его на цветную пленку. Раз за разом я прицеливался объективом фотоаппарата, фиксируя, как того требовало задание, состояние слоев яркости приземной атмосферы. Потом, уже на Земле, рассматривая целый ворох этих снимков, которые я старательно «нащелкивал» в полете, сам убедился, что никакая самая качественная фотопленка не в состоянии передать подлинное богатство и поразительно емкую, многогранную красоту цветовой симфонии космоса.
Впрочем, все это лирика. Ведь задача состояла не в том, чтобы добавить восторженных эпитетов к тем описаниям космических зорь, которые уже высказывали мои предшественники, побывавшие на орбите. Надо было помочь ученым осмыслить происходящее в космосе. Фотопленки, которые я доставил на Землю, полностью отвечали их требованиям. И все же жаль, что неповторимую красоту космических зорь нельзя пока перенести на Землю, хотя бы запечатленной с помощью той же фотопленки…
Однако ученых волновало, как мне кажется, совсем не это обстоятельство. Они задавались другими вопросами. Почему сумеречный ореол Земли видится космонавтами по-разному? Из-за чего так сложна и многообразна цветовая гамма космических зорь?
Первыми предложили свою разгадку явления медики. Они напомнили, что у каждого человека оптические характеристики глаз сугубо индивидуальны. Все мы видим по-разному. Объяснение вполне убедительное. Конечно, цветовые восприятия в космосе в какой-то мере субъективны, да еще стоит учесть характеристики стекла иллюминатора. У А. Леонова, например, в шлем скафандра, предназначенного для выхода в открытый космос, были вмонтированы фильтры, которые не пропускали к глазам до 97 процентов солнечного света. А, скажем, в иллюминаторах моего «Союза-3» стояли обыкновенные кварцевые стекла. Так что некоторые расхождения в описаниях цветовых тонов и оттенков неизбежны. Но при всей убедительности объяснения медиков все же явно недостаточно.
На помощь медикам пришли физики. Проанализировав состояние атмосферы во время полетов космических кораблей, они показали, что во время наблюдений у космонавтов были различны метеорологические условия, направления визирования, положение Солнца и т. д. Поэтому-то цветовые картины сумеречного ореола Земли оказались неодинаковыми.
Давным-давно известно людям, что Земля круглая и атмосфера, которая окружает нашу планету, имеет сферическую форму. Но до недавнего времени ученые считали возможным не обращать на это особого внимания, и в расчетах они допускали, что атмосфера «плоская». Дело в том, что стоит лишь слегка искривить эту очень удобную «плоскую атмосферу с параллельными световыми лучами», как сразу возникали головоломные усложнения в расчетах, создавался своеобразный математический лабиринт, преодолеть который крайне трудно, а некоторые полагали — даже невозможно. К тому же особой нужды забираться в этот лабиринт не было: «плоская» атмосфера вполне себя оправдывала во всех практических расчетах, результаты получались достаточно точными.
Приговор «плоской» атмосфере вынес первый спутник. Столь упрощенная модель не могла уже удовлетворить ученых, и им пришлось-таки залезать в лабиринт. Первыми проложили путь в хитроумных его закоулках академик В. Соболев и его ученик, доктор физико-математических наук И. Минин. Группа молодых последователей должна была продвинуться дальше. Цель: дать более эффективный метод расчета яркости планетных атмосфер, разработать строгую теорию сумеречных явлений. Задача, сформулированная как теоретическая, несла в себе большое практическое значение. Ее решение обещало не только надежный способ определения оптических свойств атмосферы Земли и других планет, но, что не менее важно, открывало новые возможности для навигации в космосе.
Молодые ленинградские ученые получили в конце концов формулы яркости сферической планетной атмосферы, учитывающие положение наблюдателя в космосе, условия освещения Солнцем и многое другое. Они провели расчеты сумеречного ореола земного горизонта, построили цветные картины: вместо громоздких интегралов получилась мозаика красок, всем понятная картинка. Теперь оставалось проверить расчеты экспериментом в космосе.
Под руководством члена-корреспондента АН СССР К. Кондратьева, главного энтузиаста эксперимента, предложившего включить его в программу полета еще «Союза-5», в Ленинграде сделали специальный прибор. 15 января 1969 года на втором и шестом витках и 16 января — на пятнадцатом Е. Хрунов провел наблюдения сумеречного ореола Земли. Сперва он описал его так, как видел сам, а потом, вооружившись прибором, выполнил эксперимент по спектрофотометрированию.
«Смотришь на земной горизонт в направлении, где должно взойти Солнце, и видишь сначала полосу космической зари, которая постепенно увеличивается по высоте и азимуту, — сообщал Е. Хрунов. — Четко видна линия горизонта и линия разрыва облачности. Атмосфера на горизонте у поверхности Земли ярко-красная, сочная. Выше она переходит в оранжевую, желтую, темно-синюю, затем в светло-синюю с плавным переходом в фиолетовый цвет, а потом в черный космос с мириадами ярко светящихся, немигающих звезд…
В противоположном направлении от места восхода Солнца, на ночной стороне, у горизонта Земли наблюдается, — продолжал космонавт, — довольно светлая серого цвета полоса, яркость которой с высотой уменьшается. Но на высоте 95–100 километров яркость опять увеличивается и затем переходит в черный, усыпанный звездами космос. Дивную картину представляет дневной горизонт Земли, хотя линию его просматриваешь не очень четко из-за наличия атмосферы. Он выступает в виде голубой, размытой сверху и снизу полосы, как бы наложенной на цветную дымку».
Корабль летит почти навстречу Солнцу, а точнее, под углом 30 градусов от направления на наше дневное светило. На поверхности планеты ночь, и люди еще не видят зари, но вот она появляется, все увеличивается по протяженности и насыщенности цветов. Она все светлеет, и там, где должно показаться Солнце, образуется светящийся столб. Затем появляется край солнечного диска, и заря сразу уменьшается по высоте и исчезает совсем. Вот Солнце взошло наполовину, яркость его возросла настолько, что на него уже нельзя смотреть прямо. Если с поверхности Земли человек видит горизонт на удалении трех-четырех километров, то с высоты 250 километров он отодвигается на расстояние 1700 километров, и поэтому восход для космонавта наступает примерно на час раньше, чем для живущих на Земле, в точке, над которой пролетает космический корабль.
Исследования сумеречного горизонта Земли продолжались на «Союзах» и «Салютах». Содружество ученых и космонавтов принесло здесь открытие, которое было занесено в государственный реестр. Вот как он выглядит.
«Диплом № 106. Заявка от 9 августа 1971 года.
Авторы открытия
А. А. Бузников — кандидат технических наук, К. Я. Кондратьев — член-корреспондент АН СССР, A. И. Лазарев — доктор технических наук, М. М. Мирошников — доктор технических наук, О. И. Смоктий — кандидат физико-математических наук, и летчики-космонавты СССР Г. Т. Береговой, А. Г. Николаев, B. И. Севастьянов — кандидат технических наук, и Е. В Хрунов.
Название открытия
Явление вертикально-лучевой структуры дневного излучения верхней атмосферы Земли.
Приоритет открытия
19 мая 1971 года
Формула открытия
Установлено ранее неизвестное явление вертикально-лучевой структуры (горизонтальной неоднородности) дневного излучения Земли в переходной области от ночного эмиссионного слоя до зоны цветного сумеречного ореола».
К слову сказать, после полета в космос Е. Хрунов особо «пристрастился» именно к этой работе. Наблюдения и эксперименты, проделанные им на орбите, легли в основу его диссертации.
Наблюдения, проведенные космонавтами на борту космических кораблей «Союз-3», «Союз-5» и «Союз-9», позволили открыть новые свойства верхних слоев атмосферы. Когда космический корабль находится в тени Земли, при благоприятных условиях (если нет ураганов и циклонов) отчетливо видна черная линия края планеты, а над ней на высоте 80–100 километров однородный светящийся слой — венец пепельно-серого цвета с розовым оттенком. Слегка размытая граница этого слоя хорошо выделяется на черном фоне космоса.
Линия терминатора, которая делит видимую поверхность Земли на дневную и ночную — сумеречная область, — многообразием цветов напоминает радугу. Особенно интересное явление можно увидеть в переходной области между зонами цветного сумеречного ореола и ночного венца. Здесь появляется сильное свечение в виде желто-серых столбиков, идущих от нижней светлой полосы у горизонта, которая вдвое больше, чем высота венца. Сам венец как бы «разлохмачивается», и появляется впечатление, что с Земли направлены вверх мощные лучи прожекторов.
По мере того как Солнце поднимается над горизонтом, в определенный момент можно наблюдать зону цветного свечения в виде «усов». Они видны, правда, не более двух минут. В районе терминатора красочный ореол как бы отрывается от поверхности Земли и по касательной уходит в черное небо.
Открытие, о котором идет речь, стало итогом почти пятилетнего серьезного научного труда: наблюдений, экспериментов, анализа полученных данных. Красота космических зорь обернулась новым знанием. Насколько же оно важно? Нужно ли так тщательно исследовать результаты наблюдений космонавтов, хотя бы и весьма впечатляющие с эстетической точки зрения?
Во-первых, открытие ночного светящегося слоя в верхних слоях атмосферы Земли поможет космонавтам в самостоятельной навигации и ориентации пилотируемых кораблей на околоземных орбитах.
Во-вторых, светящиеся столбики в переходной зоне свидетельствуют о неоднородности слоев атмосферы в горизонтальном направлении. А это очень важный вывод принципиального характера. Он позволяет найти способ оценки состояния атмосферы, изменений ее состава, загрязненности, наконец, контроля идущих при этом процессов.
Наблюдение из космоса за атмосферой, ее оптическими свойствами превращается сегодня в часть работы по сохранению окружающей нас среды.
По солнечным ступенькам
Будущее атмосферы не может нас не беспокоить. Слишком быстро растут масштабы и размах человеческой деятельности, «перекраивающей» лик нашей планеты. Мы, люди, вмешиваемся в окружающий мир активно и властно. Что же сегодня происходит в окружающей нас среде, в частности в атмосфере, как «отвечает» она на это вторжение?
Прежде всего вспомним о кислороде. Его могучий источник — фотосинтез в земных растениях. Атмосфера содержит около 1 500 000 000 миллионов тонн кислорода. Через каждые две-три тысячи лет этот «живительный газ» полностью обновляется. Но ведь теперь мы сжигаем угля, нефти, горючего газа гораздо больше, чем раньше! За последние 15–20 лет нефти добыто больше, чем за всю предшествующую историю человечества. Эта нефть сгорает в топках электростанций, в двигателях автомобилей, тепловозов и кораблей. Сгорает, поглощая кислород воздуха. Образно говоря, нефть «поедает» кислород со всевозрастающим аппетитом. Не уменьшилось ли его количество в нашем столетии?
Оказывается, нет, не уменьшилось. По крайней мере, по сравнению с 1910 годом, когда начались систематические наблюдения за количеством кислорода. «Зеленые фабрики» — растения — работают, видимо, продуктивнее, чем раньше. Подсчитано, что если даже возрастут темпы добычи топлива, кислорода хватит на сотни тысяч лет. «Кислородный голод» планете не грозит. Зато с углекислым газом дело обстоит несколько иначе.
Углекислый газ в атмосфере Земли играет роль, сходную с той, что выполняют стекла в оранжерее. Он пропускает солнечный свет к поверхности Земли, но задерживает тепловое излучение планеты. Создается так называемый «тепличный», или «парниковый», эффект. За столетие количество углекислого газа в атмосфере возросло на несколько процентов. Его источники, напомню, — дыхание животных и растений, сжигание ископаемого топлива, вулканические газы и т. д. Накопление углекислого газа идет довольно быстро. По некоторым данным к 2000 году его будет уже на 20 процентов больше, чем сейчас. В масштабах планеты, как показывают расчеты, это приведет к общему повышению температуры в среднем на два градуса. Увы, пока ученые не знают, как отнесутся к такому повышению концентрации углекислого газа «зеленые фабрики» планеты. Если они «догадаются» увеличить свою производительность и станут интенсивнее поглощать углекислый газ, то все останется по-прежнему. А если таких резервов не окажется?
Большое влияние на климат Земли оказывает пыль в атмосфере. Ее рождают пустыни, площадь которых растет из-за уничтожения лесов, вулканические извержения, а кроме того, выбросы из фабричных и заводских труб, распыление удобрений и т. д. Между тем пыль — это преграда для солнечной радиации. Недаром некоторые ученые уверяют, что похолодание, отмечавшееся в последние десятилетия, произошло в результате увеличения количества пыли в атмосфере. Не все соглашаются с таким выводом, однако ни у кого не вызывает сомнений, что запыленность атмосферы — это главный фактор, способный изменить климат Земли, и притом очень резко. Загрязнение атмосферы — процесс опасный, и потому за ним надо тщательно следить. Тем более что пока неизвестно, каков тот предел запыленности атмосферы, за которым наступают пагубные «неприятности» с климатом.
«Не нужно драматизировать создавшееся положение, — считал академик А. Виноградов, — но усиление загрязнения атмосферы в ближайшие десятилетия угрожает прежде всего здоровью человека. Поэтому для оценки критических изменений в атмосфере совершенно необходимо организовать систематические наблюдения за состоянием атмосферы на всей планете. Те эксперименты, которые проводятся на орбитальных станциях „Салют“ по определению оптических свойств атмосферы, чрезвычайно важны. Они позволяют с высокой точностью выявлять запыленность атмосферы, контролировать процессы, которые идут в ней».
Какие же эксперименты имел в виду академик А. Виноградов? Между прочим, не в последнюю очередь те из них, что связаны с наблюдениями космических зорь. Когда Солнце всходит или заходит, его лучи пронизывают максимально возможную воздушную толщу вдоль земной поверхности. С помощью особых приборов — спектрометров в таком случае удается с высокой степенью точности определять содержание в атмосфере даже ничтожно малых примесей газов или аэрозолей. К тому же, по мере того как Солнце поднимается или опускается, оно просвечивает последовательно разные по высоте слои атмосферы — от нижних до самых высоких и наоборот. Значит, можно оценивать содержание тех или иных примесей в атмосфере в зависимости от высоты, то есть получать как бы высотный ее разрез.
Осуществить подобные эксперименты было делом далеко не простым. Космические восходы и закаты скоротечны. Успеть за считанные минуты точно навести приборы на Солнце нелегко, необходимо выполнить сложный маневр, правильно сориентировать станцию, привести в действие хитроумный оптический прибор КСС-2 — комплекс солнечных спектрометров. Впервые все это довелось проделать космонавтам А. Губареву и Г. Гречко на борту орбитальной станции «Салют-4». Второго февраля 1975 года на четырех витках космонавты восемь раз включали КСС-2. Каждые полторы секунды фиксировали они новый спектр. Записанные на магнитную ленту данные о 1200 спектрах были доставлены на Землю.
Подобные исследования продолжили другие космонавты. Например, А. Леонов и В. Кубасов проводили съемку Солнца с борта космического корабля «Союз-19» во время совместного советско-американского эксперимента «Союз» — «Аполлон». Фотообъектив их камеры смотрел при этом на наше светило через земную атмосферу. Она как гигантская линза исказила облик Солнца, но зато на фотографиях довольно точно удалось зафиксировать плотность различных участков атмосферы.
Следующий важный шаг сделал экипаж орбитальной станции «Салют-6» В. Романенко и Г. Гречка. Они в процессе очередных съемок обратили внимание на едва заметное изменение формы солнечного диска. То, что Солнце во время восхода и захода меняет свою форму и цвет, известно каждому. Причем чем плотнее среда, сквозь которую проходят лучи, тем больше она их искривляет. Именно поэтому округлый диск, каким выглядит светило, находясь в зените, по мере приближения к линии горизонта начинает сплющиваться. И вот тут-то Г. Гречко обнаружил необычное явление. Во время первой экспедиции бортинженер, вооружившись биноклем, каждую свободную минуту проводил у иллюминатора. И однажды заметил на опускающемся за горизонт солнечном овале какие-то полосы. Они как бы опоясывали овал по краям. Г. Гречко назвал их «ступеньками».
Несомненно, это было еще одно свидетельство слоистого строения атмосферы Земли. Оказалось, что несмотря на бурное перемешивание воздушных масс из-за восходящих и нисходящих потоков и ветров, атмосфера ухитряется сохранять вполне различимую «этажность» слоев. Космонавты обычно насчитывают шесть-семь таких «ступенек» разной высоты. Но как использовать это явление для изучения атмосферы?
Ответить на этот вопрос взялись ученые из Института физики атмосферы АН СССР под руководством академика А. Обухова. Они расшифровали природу запечатленного космонавтами на пленке явления. И вот что при этом выяснилось: в том самом месте, где обозначалась «ступенька», на высоте пять-шесть километров над уровнем моря в толще атмосферы было установлено резкое изменение температуры — «фронт», как говорят метеорологи. А этот самый «фронт», между прочим, очень часто предвещает изменение погоды. Теперь можете себе представить, какую неоценимую услугу метеорологам оказал не совсем обычный фотоснимок, доставленный с борта «Салюта». Ведь ни одним из известных до настоящего времени способом не удавалось зафиксировать подобные явления.
Закономерности, выявленные в результате плодотворного сотрудничества космонавтов и ученых, позволили по-новому взглянуть на перспективу развития космической метеорологии. В будущем любое отклонение от эталонных параметров атмосферы, «привязанных» к определенному району воздушного океана нашей планеты, не останется незамеченным. Информация о возникших отклонениях сразу поступит на пульты метеорологических центров, будет оперативно использована при составлении прогнозов погоды, сделает их более точными и достоверными.
Конечно, чтобы применить на практике новые методы зондирования атмосферы из космоса, предстоит еще выполнить огромный объем исследований. Эта работа идет полным ходом, и в ней активно участвуют космонавты. Вот почему разговор о Солнце часто заходил в сеансах связи Центра управления полетом с экипажами «Салюта-6».
— Над Средней Азией антициклон, — говорит Л. Попов, — вот где жарко…
— А мы тут тоже используем солнышко максимально, — добавляет В. Рюмин, — просвечиваем им атмосферу. Кстати, на диске ступеньки сняли, должно неплохо получиться…
В течение нескольких дней проводили космонавты эксперимент «Рефракция». Они снимали восходы и заходы Солнца, зарисовывали цветовую зарю, проводили визуальные наблюдения. Продолжалась работа, начатая их товарищами за несколько лет до этого. Преемственность в научной программе полета орбитального комплекса «Салют-6» — «Союз» — «Прогресс» позволяет постоянно углублять и расширять наши познания о Земле и космическом пространстве.
Такого рода информация, получаемая регулярно, имеет не только научно-теоретическое значение, но и сугубо практическое. Перво-наперво это позволяет уточнить модель атмосферы, уяснить сущность протекающих здесь фотохимических процессов. Возможно, станут понятнее пути образования удивительного слоя озона — этого тончайшего покрывала нашей планеты, спасающего все живое от губительного ультрафиолетового излучения Солнца. Не исключено, например, что уточнение концентрации водяных паров в верхней атмосфере даст ключ к разгадке тайны серебристых облаков, вот уже почти столетие волнующей ученых.
За серебристой стаей облаков
Любопытно, что задача наблюдения за серебристыми облаками никогда специально не предусматривалась, хотя об их существовании ученые знают давным-давно, еще с конца прошлого века. Разные люди в разных местах изредка замечали после захода Солнца тонкий слой облаков, словно бы светящихся в потемневшем небе. Отчего же они видны ночью, когда все другие облака, как им и положено, «гаснут»? Вывод не вызывал сомнений: они, эти ночные облака, располагались очень высоко. Подсчитали высоту и не поверили: где-то около 80 километров! Откуда же они берутся и из чего состоят?
На эти вопросы и по сей день нет однозначного ответа. Зато много споров и предположений.
На высоте более 80 километров царят 70–100-градусные морозы. Ученые полагают, что при определенных обстоятельствах, например, после извержения вулканов, туда выносятся большие массы водяного пара. Он конденсируется на крохотных космических пылинках и превращается в мельчайшие кристаллики. Однако до сих пор никто не решается с полной уверенностью утверждать, что серебристый блеск дают именно водяные пары. Вполне возможно, что облака состоят из твердой углекислоты или какого-то иного вещества. Проверить это трудно, очень уж неудобная для исследований высота, на которой «живут» загадочные тучки.
Правда, в США и Швеции предпринимались попытки добраться до ночных пришельцев, используя ракеты. Их оснащали специальными ловушками. Сообщалось, что удалось якобы захватить ими вещество серебристых облаков. Но пока ловушки возвращались на Землю, оно испарилось. В руки ученых попали лишь «голые» пылинки. Разгадка тайны вновь ускользнула, а интерес науки к этому явлению нарастал.
Точные сведения о происхождении и составе серебристых облаков ученым нужны не сами по себе. Они, эти сведения, могут дать возможность уверенно судить о составе верхней атмосферы, о направлении и силе ветров на соответствующих высотах. Однако особых надежд заполучить такие данные ученые не питали. Дело в том, что с Земли серебристые облака видны крайне редко. К тому же замечали их в основном над Европой, изредка над Азией, а, скажем, над Америкой вплоть до 60-х годов и вовсе ни разу. Даже уверились было в мысли, что над южным полушарием их не бывает совсем. Правда, сравнительно недавно все же заметили серебристые облака и с одной из южноамериканских станций, а еще через некоторое время — и над Антарктидой. Видимо, поэтому никто и не рассчитывал, что здесь смогут помочь космонавты. Вот почему встреча орбитальной научной станции «Салют-4», на борту которой находились П. Климук и В. Севастьянов, с серебристыми облаками стала настоящей научной сенсацией. Вот как П. Климук описал эту встречу с загадочным явлением в своем репортаже с орбиты.
— Видим блестящий холодный свет, почти перламутровый… Он красиво так переливается… Мы такой захватывающей картины еще не видели, хотя успели насмотреться тут на многое… Сейчас мы видим их как бы в профиль, верхняя граница очень четкая, а нижняя размытая, толщина всюду разная…
Космонавты обнаружили серебристые облака на исходе дня в 21 час 35 минут, пролетая в районе Канады. А потом они исчезли, и все решили, что выпал на долю П. Климука и В. Севастьянова экзотичный случай, который мало что может дать науке. И вдруг через две недели…
— «Кавказы», я — «Заря», на связь! — привычно вызывал оператор Центра управления экипаж «Салюта-4».
В эфире молчание. Земля повторила вызов. Снова лишь потрескивание шумов в радиолинии. «Уж не случилось чего на орбите?» — мелькнуло в голове, но тут же громко и торопливо прозвучал голос П. Климука:
— Я — «Кавказ», слышу вас хорошо.
— Доброе утро, «Кавказы»! Крепко же вы спите! — с облегчением вздохнул оператор.
— Где там спим! Мы уже давно на ногах! Поднялись, посмотрели в иллюминатор и тут же забыли обо всем на свете. Мы увидели серебристые облака! — восторженной скороговоркой объяснил молчание П. Климук.
— А координаты зафиксировали? — деловито осведомился оператор.
— Конечно! — подхватил «Кавказ». — У нас все записано.
Космонавты попросили Центр управления разрешить им продолжить наблюдения, провести фотосъемки и воспользоваться спектрографическим прибором МСС-2. На Земле согласились, и вот тогда-то в программе полета появился эксперимент, назовем его «Серебристые облака», который не планировался заранее.
Более двадцати раз за период с 1 по 23 июля экипаж «Салюта-4» наблюдал неповторимую картину свечения серебристых облаков на фоне цветового ореола космической зари. То над Сахалином, то над Казахстаном, то над Алтаем…
— Такое впечатление, что они не вращаются вместе с атмосферой, а застыли против Солнца, — недоумевал П. Климук. — За несколько часов наблюдений они как будто совсем не сместились. Нельзя ли уточнить, почему нам кажется, что облака неподвижны?
— Специалисты говорят, что облака вращаются, — отвечает Земля. — Просто вы наблюдаете уникальнейший случай, когда образовался целый широтный пояс серебристых облаков огромной протяженности, в несколько тысяч километров.
Облака тянулись оплошной линией от Урала до Камчатки. И космонавты не упустили этой невероятно редкой удачи. Быстро подготовили аппаратуру к съемке. Включили ручную ориентацию станции и, забыв о красотах, открывавшихся их глазам, сноровисто делали снимки и спектрограммы.
— Спасибо вам, «Кавказы», от ученых, — отвечает Земля на доклад экипажа о проделанной работе. — Они говорят: вы пролили бальзам на их души.
Расшифрованные потом на Земле, спектрограммы принесли новые сведения о природе неуловимых облаков. На них, кстати, обнаружились полосы поглощения молекулярного кислорода и воды. Как будто подтверждается конденсационная гипотеза происхождения серебристых облаков.
Вот так взгляд из иллюминатора космической станции дал научную информацию, которую не получить и за многие десятилетия весьма интенсивных наблюдений с поверхности Земли.
Случай с серебристыми облаками, в общем-то, не совсем обычный. Но его исключительность, по-моему, лишний раз подчеркивает, насколько широки, потенциально богаты, а порой и неожиданны возможности изучения нашей планеты из космоса.
Внимание — магнитная буря!
В августе 1925 года К. Циолковский выпустил в Калуге конспект, как принято говорить — на правах рукописи, под странным названием: «Причина космоса». Там есть такие слова: «Мы живем более жизнью космоса, так как космос бесконечно значительнее Земли по своему объему, массе, времени…» И в других работах калужского провидца постоянно утверждалась мысль: связи Земли и космоса более тесны и разнообразны, чем мы полагаем. Прошедшие с тех пор десятилетия убеждают в том, что и здесь Константин Эдуардович оказался прав.
Чем больше и глубже познаем мы природу родной планеты, тем яснее и четче выявляются ее связи с окружающей ее космической средой. Особенно здесь, на границе Земля — космос, где едва ли не самым мощным и эффективным орудием познания стали в последние годы космические полеты. Вот почему я без риска впасть в преувеличение берусь утверждать, что любой, самый, казалось бы, рядовой эксперимент, проведенный космонавтами на орбите, содержит в себе не только сугубо теоретические, но и прикладные грани проблемы «Земля — космос». Взять хотя бы такой опыт с коротким, но вполне научным названием, как «Эмиссия». Попытаюсь объяснить, что за ним кроется.
Без малого сто лет назад родилась гипотеза о существовании в верхних слоях земной атмосферы некой зоны электрически заряженных частиц. Шли годы, и, кстати, тем самым летом, когда К. Циолковский писал свой труд «Причина космоса», эта гипотеза получила подтверждение в экспериментах с радиоволнами. Появилось новое геофизическое понятие «ионосфера».
Чем дальше изучали ионосферу, тем больше убеждались, что механизм ее образования и существования чрезвычайно сложен. Ионосфера — это передовая линия обороны воздушной оболочки Земли, где молекулы и атомы, ее слагающие, первыми принимают удар многообразного излучения Солнца и потоков частиц, идущих из космических глубин. В результате бесконечных столкновений с ними и появляются на свет электроны и ионы, из которых состоит ионосфера. В процессе этом разобраться очень трудно еще и потому, что вся эта электромагнитная кухня находится на высотах 250–350 километров. Как туда добраться?
А добраться и разобраться надо. И совсем не из праздного любопытства, а по причинам прозаически практичным. Ведь при разогреве ионосферы воздух из более плотных нижних слоев поднимается выше, вызывая значительное увеличение плотности среды на больших высотах. А раз так, то сопротивление движению космических аппаратов на этих высотах увеличивается. Подобные колебания плотности заранее рассчитать невозможно. О них удается судить лишь по изменению орбит спутников и кораблей, которые движутся в среде как бы с переменной плотностью. Эти же колебания приводят к возникновению помех или даже перебоев в радиосвязи, что небезразлично уже не только для космонавтики.
Солнце решающим образом влияет на образование ионосферы. Поэтому ее граница ночью и днем меняется в довольно значительных пределах — от 25 до 30 километров. Ионосфера как бы дышит, то вздымаясь, то опускаясь. А солнечные вспышки, увеличивая набегающие потоки ультрафиолетовых и рентгеновских лучей, поднимают в ней волнение, иногда переходящее в настоящий шторм. Энергия частиц возрастает, они проникают глубже. Во время таких вот геомагнитных бурь и происходит сильный разогрев верхних слоев атмосферы за счет энергии Солнца. Кроме того, этому разогреву способствуют электрические токи, протекающие в полярных областях ионосферы.
Все эти упомянутые мною взаимные влияния, разогревы, перетекания, пульсирование границ — процесс невероятно запутанный, разбираться в котором люди только начинают. Эксперимент «Эмиссия» касается лишь небольшой его частности. И появился он в программе полетов после того, как в сентябре 1973 года космонавты В. Лазарев и О. Макаров с корабля «Союз-12» впервые увидели свечение эмиссионного слоя на ночной стороне Земли. Затем эти наблюдения с помощью специальной аппаратуры продолжили экипажи орбитальной станции «Салют-4». Однако наиболее существенные результаты принесли наблюдения космонавтов с борта орбитальной станции «Салют-6».
Экипаж второй основной экспедиции на «Салюте-6» (В. Коваленок и А. Иванченков) не только многократно наблюдал эмиссию ночной атмосферы Земли, но и сфотографировал ее. В дневнике командира экипажа была сделана запись: «Сияние наблюдается одновременно со вторым эмиссионным слоем. Отдельные лучи полярного сияния достигают второго эмиссионного слоя, как бы разрывая его…»
Именно в эти дни на Земле отмечались возмущения, характерные для магнитной бури, которая началась внезапно и была очень сильной и продолжительной. Повышенное излучение второго эмиссионного слоя заметили даже с Земли в средних широтах.
Интересную картину увидели космонавты 29 сентября 1978 года. В 9 часов утра по московскому времени, когда станция пролетала над Атлантикой, начались мощные полярные сияния одновременно в северном и южном полушариях. Области свечения простирались от полюсов до 25 градусов северной и южной широт. Орбитальная станция пролетала как над областями, так и через области свечения полярных сияний. Они были похожи на бегающие лучи прожекторов, бивших с поверхности Земли. Яркую, переливающуюся всеми цветами радуги картину космонавты сравнивали с фантастической цветомузыкой. Это мощное полярное сияние продолжалось около десяти часов и закончилось так же внезапно, как и началось.
Систематические наблюдения космонавтов за эмиссионным излучением верхней атмосферы на протяжении 140-суточного полета позволили ученым сделать некоторые обобщения и выводы. Так, интенсивное свечение второго эмиссионного слоя в форме замкнутого кольца, как предположили специалисты, служит предвестником мощных полярных сияний и связано с проявлением солнечной активности. И первыми эту связь «нащупали» космонавты.
На 135-е сутки полета В. Коваленок в дневнике записал: «Первый эмиссионный слой слился с видимым горизонтом Земли (23.30–00.05 моск. времени). Отмечается повышенное свечение всей атмосферы на теневом участке орбиты. Второй эмиссионный слой наблюдается на небесной сфере замкнутым кольцом. Спросить ЦУП: не ожидаются ли мощные полярные сияния? Какое состояние Солнца?»
Центр управления полетом обратился к соответствующим специалистам. Те подтвердили, что из-за процессов, происходящих на Солнце, пожалуй, возможны мощные полярные сияния. А вскоре прогноз космонавтов полностью оправдался. Теперь уж заволновались ученые: как это экипаж станции сумел предусмотреть очередной солнечный каприз?
Оказалось, что несколькими днями раньше на борт «Салюта-6» было передано сообщение о предполагаемой магнитной буре с просьбой к космонавтам понаблюдать за полярными сияниями в районах южнее Австралии и над юго-восточной частью Канады, если таковые возникнут. Действительно, и в северном и в южном полушариях в назначенный срок замерцали сполохи. И вот тут-то космонавты вспомнили, что накануне появилось в небе свечение второго эмиссионного слоя. Оно было хорошо заметно в виде замкнутого кольца…
Теперь ученые не сомневаются: эмиссионное излучение верхней атмосферы Земли и полярные сияния — хороший индикатор геомагнитной, геофизической и гелиофизической активности. Особенно чутким они считают второй эмиссионный слой. Поэтому в программе последующих космических полетов предусмотрены систематические наблюдения и исследования с помощью приборов верхних слоев атмосферы в видимой, ультрафиолетовой и инфракрасной областях спектра.
Но уже сегодня оптические наблюдения космонавтов дали возможность уточнить некоторые представления о физических процессах и явлениях в земной атмосфере. Например, еще после полета корабля «Восход» К. Феоктистов высказал предположение, что полярные сияния существуют постоянно и их все время должно быть видно из космоса. И что вы думаете — второй экипаж «Салюта-6» наблюдал полярные сияния непрерывно в течение 49 суток. Правда, сияния типа полярной шапки, то есть самые мощные, встречаются все-таки довольно редко. Это подтвердили экипажи всех длительных экспедиций, работавших на «Салюте-6».
Итак, мы начали с одного рядового опыта, поставленного на орбитальной научной станции. И даже у него есть своя история, свой теоретический интерес, свой практический смысл. Есть будущее — тот желанный итог, когда ученые скажут: «Все ясно». И тогда, я уверен, слова эти станут сигналом нового начала.