Антенные устройства
Антенные устройства
Антенна – лучший усилитель
При всей нелепости данного утверждения оно во многом оказывается справедливым. Антенна не усиливает сигнал, но может оказать решающее значение в обеспечении требуемой дальности и качества связи. Давайте рассмотрим, почему антенна, наперекор утверждениям технического описания, в котором указан ее коэффициент усиления, все-таки не усиливает сигнал. Антенна – пассивный элемент, следовательно, не имеет источника питания и, следовательно, не может обеспечить отдачу большей мощности, чем к ней подводится.
Коэффициент усиления
Коэффициент усиления антенны (в обиходной речи – усиление антенны) – относительная величина, показывающая во сколько раз эффективность данной антенны выше по сравнению с полуволновым диполем или с изотропным излучателем. Другими словами, на сколько большую напряженность поля создаст данная антенна по сравнению с эталонной на одинаковом расстоянии, при одинаковой подводимой мощности и на одинаковой частоте. Так как изотропный излучатель – идеальное теоретическое устройство, то в технических характеристиках обычно приводится усиление по отношению к диполю. Коэффициент усиления антенны по отношению к диполю обычно дается в дБ (dB), а по отношению к изотропному излучателю – в дБи (dBi). Соотношение этих показателей составляет 2.14 дБ. Например, если приведен коэффициент усиления антенны 3 дБи (по отношению к изотропному излучателю), то по отношению к диполю он будет 3-2.14=0.86 дБ. Иногда коэффициент усиления по отношению к диполю обозначают дБд (dBd), явно указывая, по отношению к чему проводилось измерение. Диаграмма направленности Направленность антенны – относительная величина показывающая, на сколько коэффициент усиления антенны в одном направлении больше, чем в другом. Направленность антенны отображают на специальном графике, называемом диаграммой направленности. Практически все антенны в большей или меньшей степени обладают направленностью. Направленность в основном зависит от конструкции антенны. Используя антенны с различными диаграммами направленности, можно повысить дальность и качество связи в определенном направлении. Так как антенна излучает электромагнитные волны в пространство, которое, как известно, 3-х мерно, то различают диаграммы направленности в горизонтальной и вертикальной плоскостях.
Частотный диапазон
Ширина частотного диапазона антенны – это полоса частот, в которой коэффициент усиления антенны уменьшается не более чем в два раза (на 3 дБ). Так как антенна – часть резонансной системы, то наибольшую эффективность от нее можно ожидать только на определенной частоте (частоте резонанса). Следовательно, для наибольшей дальности связи потребуется антенна, специально созданная (настроенная) для работы на конкретной частоте. Обычно на практике система работает не на одной, а на нескольких частотах. Как быть? В таких случаях идут на компромисс. Выбирается антенна, у которой характеристики в определенной полосе частот не выходят за пределы допустимых. Естественно, такая антенна будет хуже работать на частотах, отличных от частоты резонанса, но все еще приемлемо для нормальной связи. Можно, конечно, использовать для каждой частоты отдельную антенну, но это существенно усложнит (и удорожит) конструкцию системы (соединительный кабель, антенные переключатели, мачтовые устройства и т.п.). Как правило, более узким диапазоном частот обладают направленные антенны и антенны с высоким усилением. Мы перечислили наиболее важные характеристики, по которым выбирают антенны. Наверняка все понимают, что чем выше параметры антенн, тем выше их стоимость. Но даже самая высококачественная и дорогая антенна не сможет решить возложенные на нее задачи, если она не правильно установлена и/или настроена. От параметров антенн и от правильности их установки и настройки зависит дальность связи, которая может изменяться от предельно достижимой, до величины меньшей в десятки, а то и сотни раз. При выборе антенн должны учитываться множество различных параметров (направленность, усиление, полоса частот, размеры, возможность настройки). Причем все они находятся в противоречии друг с другом. Только грамотное построение антенного хозяйства позволит добиться максимальной дальности и качества связи при минимальных финансовых затратах. Подбор и установка антенн является сложной инженерной задачей, решить которую под силу только опытному специалисту. Если же вы берете на себя смелость самостоятельно выбрать антенну для системы связи, то внимательно ознакомьтесь с техническими характеристиками, которые публикуются в каталогах фирм производителей.
Стационарные (базовые) антенны
Очевидно, что стационарные антенны предназначены для использования со стационарными или базовыми радиостанциями. Как правило, стационарным антеннам присущи большие габариты и масса, высокий коэффициент усиления, выраженная направленность. Применительно к подвижной связи, стационарные антенны можно условно разделить на два класса: ненаправленные и направленные.
Ненаправленные антенны
Ненаправленные антенны (иногда говорят всенаправленные или с круговой диаграммой направленности) получили наибольшее распространение благодаря своей универсальности и относительно низкой цены. Они используются при организации систем связи с широкой зоной охвата по форме приближенной к кругу. Ненаправленные антенны используются при построении систем связи в городах, на крупных промышленных объектах и т.д. – везде, где необходимо охватить радиосвязью как можно большие площади, а направление на абонентские радиостанции непостоянно (подвижные абоненты). Для достижения более высоко результата (дальность и качество связи), можно рекомендовать применение эффективных (дорогостоящих) стационарных антенн с большим коэффициентом усиления. Например, многоэлементную фазированную антенную решетку (ФАР).
Направленные антенны
Направленные антенны (другое название «Яги» или «Удо-Яги», по именам изобретателей) используют в тех случаях, когда необходима максимальная дальность связи в определенном направлении и в случаях, когда необходимо уменьшить помехи другим системам связи (находящимся не в зоне максимума диаграммы направленности). Направленные антенны относятся к дорогостоящим устройствам, поэтому их используют там, где факторы дальности и достоверности передачи информации являются приоритетными. Особенно желательно применение направленных антенн при обмене цифровыми данными, когда даже незначительное ухудшение качество связи может привести к сбоям. Для достижения большего коэффициента усиления возможно применение сдвоенных направленных антенн, включенных параллельно. Кстати, комбинация из нескольких (обычно двух) антенн может повысить качество связи и в случае ненаправленных антенн.
Имеются сотни типов стационарных антенн различных по усилению, направленности, конструкции, цене и т.п. Разобраться в подобном многообразии под силу только квалифицированному специалисту. Но даже он подчас не может дать однозначного заключения по поводу применения той или другой антенны. Поэтому наилучшим помощником в вопросе выбора является опыт, основанный на многочисленных экспериментах.
Установка и настройка стационарных антенн
Нелегкая задача выбора антенны обычно сводится к компромиссному решению, когда при хронической нехватке средств, требуется обеспечить гигантскую дальность связи. Но кроме выбора и приобретения антенны, не менее (а то и более) важной задачей является ее правильная установка и настройка. При кажущейся простоте процесса, установка антенны является достаточно сложной задачей, так как при этом решаются такие вопросы, как обеспечение необходимой прочности конструкции, уменьшение взаимного влияния между антеннами разных каналов и других систем, обеспечение заданной диаграммы направленности. При установке антенн большие проблемы создают расположенные поблизости металлические конструкции (трубы, мачты, другие антенны, опоры электропередачи и т.п.). Они могут создать радиотень и/или вызвать отражения сигналов, а это обычно приводит к нежелательным искажениям диаграммы направленности. Чем больше металла в непосредственной близости от антенны, тем менее предсказуемо ее «поведение».
Многоканальные системы и системы с дуплексным частотным разносом
При построении систем с несколькими частотными каналами и при использовании дуплексных ретрансляторов (прием и передача на разных частотах) задача правильного расположения антенн существенно усложняется. Вызвано это тем, что приемник ретранслятора или базовой станции подвержен влиянию «своего» передатчика, а в многоканальных системах еще и передатчиков соседних каналов. Помехи приему тем выше, чем меньше разнос между частотами приема и передачи и чем ближе расположены частоты соседних каналов. Уменьшить влияние передатчика на приемник до приемлемых значений можно несколькими способами.
Увеличение дуплексного и межканального частотного разноса
Метод позволяет уменьшить влияние, но не избавляет от него полностью. Недостатки: трудности с получением требуемых номиналов частот (особенно при построении многоканальных систем); ограничения, накладываемые оборудованием (зачастую дуплексный разнос ограничен 20 МГц) и рабочей полосой антенны.
Разнесение антенн в пространстве по вертикали, горизонтали или по обоим направлениям
Наиболее простой и дешевый метод снижения помех. Как правило, антенны устанавливаются на возвышении (крыша здания, мачта, естественное возвышение), площадь которого ограничена. Зачастую невозможно расположить антенны на достаточном расстоянии. При разнесении антенн на крышах, нескольких мачтах и т.п. потребуется большое количество дорогостоящего коаксиального кабеля, потери в котором увеличат затухание и в целом усложнят и удорожат конструкцию. Из-за чего стоимость системы может приблизиться, а в некоторых случаях и превысить затраты по сравнению с другими решениями (дуплексные фильтры, комбайнеры, распределительные панели).
Применение фильтрующих устройств
Дуплексные фильтры (в просторечии – «дуплексеры») позволяют использовать одну общую антенну для приема и передачи с определенным ослаблением взаимных влияний. В одно-, двухканальных системах дуплексные фильтры могут считаться оптимальным решением. В многоканальных системах обычно применяют более сложные устройства: комбайнеры и распределительные панели. К недостаткам дуплексных фильтров можно отнести необходимость установки отдельной антенны на каждый канал приема/передачи. Теоретически с помощью дуплексных фильтров можно объединить на одну антенну сначала приемник и передатчик, затем два канала и т.д. Но на практике подобный подход применяется редко из-за того, что каждый фильтр ослабляет не только мешающие, но и полезные сигналы. Передающие комбайнеры и приемные распределительные панели применяются в основном в многоканальных системах. Из названия видно, что передающие комбайнеры позволяют объединить выходы нескольких передатчиков в одну антенну, а приемные распределительные панели – одной антенне «обслуживать» несколько приемников. Подобные фильтрующие устройства относятся к категории дорогостоящих, но, к сожалению, без них обычно не удается построить многоканальную систему с удовлетворительными параметрами. Стоимость многовходовых комбайнеров и многоканальных приемных распределительных панелей соизмерима с ценой ретрансляционного оборудования, а из-за высокой трудоемкости их изготовления может потребоваться довольно много времени на исполнение заказа. Обычно многоканальное фильтрующее оборудование изготавливается индивидуально, т.е. на конкретные номиналы и заданный разнос частот.
Высоко сижу – далеко гляжу
Вряд ли кто-то станет опровергать утверждение, что чем выше установлена антенна, тем большую зону охвата будет иметь система связи. Но так ли все просто? Любая антенна, установленная на большой высоте, кроме выполнения полезной работы создает еще и помехи другим системам связи, а это, кроме физических проблем, может иметь юридические последствия. Кроме того, более высокая антенна собирает «грязь» с большей территории, создавая более высокий уровень помех на входе приемника. Например, где-то за горизонтом работает мощная станция с близкой или кратной частотой. Потратив немало сил и средств на строительство «Эйфелевой башни», придется приобретать еще и специальное фильтрующее оборудование, чтобы избавиться от нежелательных помех. В свою очередь потери в этих фильтрах настолько ослабят сигнал, что эффективность вашей системы будет такой же, как и при установке антенны на ближайшем сарае.
Для функционирования всех без исключения системах радиосвязи необходимы те или иные антенно-фидерные устройства, от самых простых штырьевых и низкопрофильных антенн, устанавливаемых в радителефонных трубках, до сложных антенных систем базовых станций и ретрансляторов. В отличие от приемных либо передающих радиовещательных и телевизионных антенных устройств, антенны для систем связи являются приемопередающими.
Общая классификация антенн для систем связи представлена на рисунке
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Заземляющие устройства
Заземляющие устройства Вопрос. Что входит в объем испытаний заземляющих устройств?Ответ. В объем испытаний входит:проверка элементов заземляющего устройства;проверка цепи между заземлителями и заземляемыми элементами;проверка состояния пробивных предохранителей в
Фильтрокомпенсирующие устройства (ФКУ)
Фильтрокомпенсирующие устройства (ФКУ) Вопрос. Как присоединяются ФКУ к сети?Ответ. Как правило, присоединяются к сети через отдельный коммутационный аппарат (5.6.73).Вопрос. По какой схеме выполняется ФКУ?Ответ. Как правило, выполняется по схеме одночастотного или
Электроустановочные устройства
Электроустановочные устройства Вопрос. На какие электроустановочные устройства распространяются рассмотренные ниже требования Правил?Ответ. Распространяются на выключатели, переключатели и штепсельные розетки для номинального тока до 16 А и напряжения до 250 В, а также
2.7.1. Особенности устройства
2.7.1. Особенности устройства Чувствительность узла можно регулировать, изменяя сопротивления резисторов R1 и R2. В схему введен индикаторный светодиод HL1 с током до 10 мА. Его назначение в данной схеме — чисто визуальная индикация состояния реле. Светодиод и ограничивающий
3.7.1. Особенности устройства
3.7.1. Особенности устройства Выходное напряжение для управления устройствами нагрузки (исполнительными элементами и последующими электронными узлами) можно снимать также, используя +UП и Uвых. Тогда в спокойном состоянии датчика напряжение на выходе узла будет
4.12.1. Особенности устройства
4.12.1. Особенности устройства Могут быть и другие конструкции, отличающиеся по внешнему виду (например, предназначенные для «втыкания» (вертикального крепления) непосредственно в землю на дачном участке. Предназначение у разного вида светильников может быть различным,
5.1.1. Особенности устройства
5.1.1. Особенности устройства Схема монтируется на перфорированной монтажной плате, размерами 40^65 мм, и помещается в корпусе самого аппарата с АОН. Печатную плату автор не разрабатывал, поэтому выводы элементов соединяются гибким монтажным проводом МГТФ сечением 0,6–0,8
5.3.1. Особенности устройства
5.3.1. Особенности устройства Главное в схеме — не перепутать подключение обмоток трансформатора Т1.Эксплуатация трансформатора на 400 Гц в сети 220 В с частотой 50 Гц практически безопасна благодаря балластному конденсатору С1 и шунтирующему резистору R1, установленным
2.8.3. Элементы устройства
2.8.3. Элементы устройства Устройство, показанное на электрической схеме рис. 1, представляет собой генератор импульсов ВЧ на транзисторе VT1 и повышающем трансформаторе Т1. При замыкании контактов кнопки SA1 транзистор VT1 взаимодействуя с первичной обмоткой трансформатора
Фотоэлектрические устройства
Фотоэлектрические устройства Фотоэлектрические (солнечные) элементы, фотодиоды и фототранзисторы имеют похожую конструкцию. Все они обладают светочувствительным PN переходом. В солнечных батареях площадь PN перехода велика и используется для вырабатывания
Работа устройства
Работа устройства Схема УРР первоначально «обучается», как описано выше. После соеди нения с интерфейсом, любая команда вызовет свечение светодиода или какую-то реакцию устройства в зависимости от того, что присоединено к вы ходам двоично-десятичного дешифратора
Работа устройства
Работа устройства Перед тем как мы приступим к конструированию робота, посмотрим на готового робота, изображенного на рис. 11.5, и проанализируем, как робот осуществляет передвижение. Треножная походка, которая использована в данной конструкции, является не единственно
1.8.39. Заземляющие устройства
1.8.39. Заземляющие устройства Вопрос 156. Каков общий объем проверки заземляющих устройств?Ответ. В данный объем проверок входит:проверка элементов заземляющего устройства. Проводится путем осмотра этих элементов в пределах доступности осмотру. Сечения и проводимости
§ 35. Грузовые устройства
§ 35. Грузовые устройства Грузовые устройства служат для выполнения на судах погрузочных и разгрузочных операций судовыми средствами.Эти устройства приспособлены для грузовых операций с генеральными, сыпучими или жидкими грузами. Экономически выгодно грузовые
11.4.3. ИМПУЛЬСНЫЕ УСТРОЙСТВА
11.4.3. ИМПУЛЬСНЫЕ УСТРОЙСТВА Импульсными называют информационные и энергетические электронные устройства, основанные на работе переключающих элементов и управлении моментами включения и выключения этих элементов. В зависимости от закона управления различают системы с