Как устроен и работает жидкостно-реактивный двигатель

We use cookies. Read the Privacy and Cookie Policy

Как устроен и работает жидкостно-реактивный двигатель

Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб, воздушных торпед и т. д. Иногда ЖРД применяются и в качестве стартовых двигателей для облегчения взлета самолетов.

Имея в виду основное назначение ЖРД, мы ознакомимся с их устройством и работой на примерах двух двигателей: одного — для дальней или стратосферной ракеты, другого — для ракетного самолета. Эти конкретные двигатели далеко не во всем являются типичными и, конечно, уступают по своим данным новейшим двигателям этого типа, но все же являются во многом характерными и дают довольно ясное представление о современном жидкостно-реактивном двигателе.

ЖРД для дальней или стратосферной ракеты

Ракеты этого типа применялись либо в качестве дальнобойного сверхтяжелого снаряда, либо для исследования стратосферы. Для военных целей они были применены немцами для бомбардировки Лондона в 1944 г. Эти ракеты имели около тонны взрывчатого вещества и дальность полета около 300 км. При исследовании стратосферы головка ракеты вместо взрывчатки несет в себе различную исследовательскую аппаратуру и обычно имеет приспособление для отделения от ракеты и спуска на парашюте. Высота подъема ракеты 150–180 км.

Внешний вид такой ракеты представлен на фиг. 26, а ее разрез на фиг. 27. Фигуры людей, стоящих рядом с ракетой, дают представление о внушительных размерах ракеты: ее общая длина равна 14 м, диаметр около 1,7 м, а по оперению около 3,6 м, вес снаряженной ракеты со взрывчаткой — 12,5 тонны.

Фиг. 26. Подготовка к запуску стратосферной ракеты.

Ракета движется с помощью жидкостно-реактивного двигателя, расположенного в ее задней части. Общий вид двигателя показан на фиг. 28. Двигатель работает на двухкомпонентном топливе — обычном винном (этиловом) спирте 75 %-ной крепости и жидком кислороде, которые хранятся в двух отдельных больших баках, как это показано на фиг. 27. Запас топлива на ракете — около 9 тонн, что составляет почти 3/4 общего веса ракеты, да и по объему топливные баки составляют большую часть всего объема ракеты. Несмотря на такое огромное количество топлива его хватает всего только на 1 минуту работы двигателя, так как двигатель расходует больше 125 кг топлива в секунду.

Фиг. 27. Разрез ракеты дальнего действия.

Количество обоих компонентов топлива, спирта и кислорода, рассчитывается так, чтобы они выгорали одновременно. Так как для сгорания 1 кг спирта в данном случае расходуется около 1,3 кг кислорода, то бак для горючего вмещает примерно 3,8 тонны спирта, а бак для окислителя — около 5 тонн жидкого кислорода[11]. Таким образом даже в случае применения спирта, который требует для сгорания значительно меньше кислорода, чем бензин или керосин, заполнение обоих баков одним только горючим (спиртом) при использовании атмосферного кислорода увеличило бы продолжительность работы двигателя в два-три раза. Вот к чему приводит необходимость иметь окислитель на борту ракеты.

Фиг. 28. Двигатель ракеты.

Невольно возникает вопрос: как же ракета покрывает расстояние в 300 км, если двигатель работает всего только 1 минуту? Объяснение этому дает фиг. 33, на которой представлена траектория полета ракеты, а также указано изменение скорости вдоль траектории.

Запуск ракеты осуществляется после установки ее в вертикальное положение с помощью легкого пускового устройства, как это видно на фиг. 26. После запуска ракета вначале поднимается почти вертикально, а по истечении 10–12 секунд полета начинает отклоняться от вертикали и под действием рулей, управляемых гироскопами, движется по траектории, близкой к дуге окружности. Такой полет длится все время, пока работает двигатель, т. е. примерно в течение 60 сек.

Когда скорость достигает расчетной величины, приборы управления выключают двигатель; к этому моменту в баках ракеты почти не остается топлива. Высота ракеты к моменту окончания работы двигателя равняется 35–37 км, а ось ракеты составляет с горизонтом угол в 45° (этому положению ракеты соответствует точка А на фиг. 29).

Фиг. 29. Траектория полета дальней ракеты.

Такой угол возвышения обеспечивает максимальную дальность в последующем полете, когда ракета движется по инерции, подобно артиллерийскому снаряду, который вылетел бы из орудия, обрез ствола которого находится на высоте 35–37 км. Траектория дальнейшего полета близка к параболе, а общее время полета равно приблизительно 5 мин. Максимальная высота, которой достигает при этом ракета, составляет 95-100 км, стратосферные же ракеты достигают значительно больших высот, более 150 км. На фотографиях, сделанных с этой высоты аппаратом, установленным на ракете, уже отчетливо видна шарообразность земли.

Интересно проследить, как изменяется скорость полета по траектории. К моменту выключения двигателя, т. е. после 60 секунд полета, скорость полета достигает наибольшего значения и равна примерно 5500 км/час, т. е. 1525 м/сек. Именно в этот момент мощность двигателя становится также наибольшей, достигая для некоторых ракет почти 600.000 л. с.! Дальше под воздействием силы тяжести скорость ракеты уменьшается, а после достижения наивысшей точки траектории по той же причине снова начинает расти до тех пор, пока ракета не войдет в плотные слои атмосферы. В течение всего полета, кроме самого начального участка — разгона, — скорость ракеты значительно превышает скорость звука, средняя скорость по всей траектории составляет примерно 3500 км/час и даже на землю ракета падает со скоростью, в два с половиной раза превышающей скорость звука и равной 3000 км/час. Это значит, что мощный звук от полета ракеты доносится лишь после ее падения. Здесь уже не удастся уловить приближение ракеты с помощью звукоулавливателей, обычно применяющихся в авиации или морском флоте, для этого потребуются совсем другие методы. Такие методы основаны на применении вместо звука радиоволн. Ведь радиоволна распространяется со скоростью света — наибольшей скоростью, возможной на земле. Эта скорость, равная 300 000 км/сек, конечно, более чем достаточна, чтобы отметить приближение самой быстролетящей ракеты.

С большой скоростью полета ракет связана еще одна проблема. Дело в том, что при больших скоростях полета в атмосфере, вследствие торможения и сжатия воздуха, набегающего на ракету, температура ее корпуса сильно повышается. Расчет показывает, что температура стенок описанной выше ракеты должна достигать 1000–1100 °C. Испытания показали, правда, что в действительности эта температура значительно меньше из-за охлаждения стенок путем теплопроводности и излучения, но все же она достигает 600–700 °C, т. е. ракета нагревается до красного каления. С увеличением скорости полета ракеты температура ее стенок будет быстро расти и может стать серьезным препятствием для дальнейшего роста скорости полета. Вспомним, что метеориты (небесные камни), врывающиеся с огромной скоростью, до 100 км/сек, в пределы земной атмосферы, как правило, «сгорают», и то, что мы принимаем за падающий метеорит («падающую звезду») есть в действительности только сгусток раскаленных газов и воздуха, образующийся в результате движения метеорита с большой скоростью в атмосфере[12]. Поэтому полеты с весьма большими скоростями возможны лишь в верхних слоях атмосферы, где воздух разрежен, или за ее пределами. Чем ближе к земле, тем меньше допустимые скорости полета.

Фиг. 30. Схема устройства двигателя ракеты.

Схема двигателя ракеты представлена на фиг. 30. Обращает на себя внимание относительная простота этой схемы по сравнению с обычными поршневыми авиационными двигателями[13]; в особенности характерно для ЖРД почти полное отсутствие в силовой схеме двигателя движущихся частей. Основными элементами двигателя являются камера сгорания, реактивное сопло, парогазогенератор и турбонасосный агрегат для подачи топлива и система управления.

В камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле — преобразование тепловой энергии продуктов сгорания в скоростную энергию струи газов, вытекающих из двигателя в атмосферу. Как изменяется состояние газов при течении их в двигателе показано на фиг. 31.

Давление в камере сгорания равно 20–21 ата, а температура достигает 2 700 °C[14]. Характерным для камеры сгорания является огромное количество тепла, которое выделяется в ней при сгорании в единицу времени или, как говорят, теплонапряженность камеры. В этом отношении камера сгорания ЖРД значительно превосходит все другие известные в технике топочные устройства (топки котлов, цилиндры двигателей внутреннего сгорания и другие). В данном случае в камере сгорания двигателя в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить более 1,5 тонны ледяной воды! Чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, как, впрочем, и стенки сопла. Для этой цели, как это видно на фиг. 30, камера сгорания и сопло охлаждаются горючим — спиртом, который сначала омывает их стенки, а уже затем, подогретый, поступает в камеру сгорания. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру (такую систему охлаждения называют поэтому иногда регенеративной). Однако одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие сверления, расположенные в нескольких кольцевых поясах, так что через эти отверстия внутрь камеры и сопла поступает спирт (около 1/10 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, превышает 2500 °C, температура внутренней поверхности стенок, как показали испытания, не превышает 1 000 °C.

Камера сгорания Горловина сопла Выходное сечение сопла Диаметр, мм 950 403 735 Давление, кг/см2 21 11 1,03 Температура, °абс 3000 2700 1650 Скорость, м/сек 0 1000 2150

Фиг. 31. Изменение состояния газов в двигателе.

Топливо подается в камеру сгорания через 18 горелок-форкамер, расположенных на ее торцевой стенке. Кислород поступает внутрь форкамер через центральные форсунки, а спирт, выходящий из рубашки охлаждения, — через кольцо маленьких форсунок вокруг каждой форкамеры. Таким образом обеспечивается достаточно хорошее перемешивание топлива, необходимое для осуществления полного сгорания за то очень короткое время пока топливо находится в камере сгорания (сотые доли секунды).

Реактивное сопло двигателя изготовлено из стали. Его форма, как это хорошо видно на фиг. 30 и 31, представляет собой сначала сужающуюся, а потом расширяющуюся трубу (так называемое сопло Лаваля). Как указывалось ранее, такую же форму имеют сопла и пороховых ракетных двигателей. Чем объясняется такая форма сопла? Как известно, задачей сопла является обеспечение полного расширения газа с целью получения наибольшей скорости истечения. Для увеличения скорости течения газа по трубе ее сечение должно вначале постепенно уменьшаться, что имеет место и при течении жидкостей (например, воды). Скорость движения газа будет увеличиваться, однако, только до тех пор, пока она не станет равной скорости распространения звука в газе. Дальнейшее увеличение скорости в отличие от жидкости станет возможным только при расширении трубы; это отличие течения газа от течения жидкости связано с тем, что жидкость несжимаема, а объем газа при расширении сильно увеличивается. В горловине сопла, т. е. в наиболее узкой его части, скорость течения газа всегда равна скорости звука в газе, в нашем случае около 1000 м/сек. Скорость же истечения, т. е. скорость в выходном сечении сопла, равна 2100–2200 м/сек (таким образом удельная тяга составляет примерно, 220 кг сек/кг).

Подача топлива из баков в камеру сгорания двигателя осуществляется под давлением с помощью насосов, имеющих привод от турбины и скомпонованных вместе с нею в единый турбонасосный агрегат, как это видно на фиг. 30. В некоторых двигателях подача топлива осуществляется под давлением, которое создается в герметических топливных баках с помощью какого-либо инертного газа — например, азота, хранящегося под большим давлением в специальных баллонах. Такая система подачи проще насосной, но, при достаточно большой мощности двигателя, получается более тяжелой. Однако и при насосной подаче топлива в описываемом нами двигателе баки, как кислородный, так и спиртовой, находятся под некоторым избыточным давлением изнутри для облегчения работы насосов и предохранения баков от смятия. Это давление (1,2–1,5 ата) создается в спиртовом баке воздухом или азотом, в кислородном — парами испаряющегося кислорода.

Оба насоса — центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата, поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала — при 4000 об/мин колеса турбины она достигает почти 500 л. с.

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.

При запуске очень важно обеспечить строгий порядок поступления в камеру сгорания обоих компонентов топлива[15]. В этом заключается одна из важных задач системы управления и регулирования двигателя. Если в камере сгорания накапливается один из компонентов (поскольку задерживается поступление другого), то обычно вслед за этим происходит взрыв, при котором двигатель часто выходит из строя. Это, наряду со случайными перерывами в горении, является одной из наиболее частых причин катастроф при испытаниях ЖРД.

Обращает на себя внимание ничтожный вес двигателя по сравнению с развиваемой им тягой. При весе двигателя меньше 1000 кг тяга составляет 25 тонн, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только Для сравнения укажем, что обычный поршневой авиационный двигатель, работающий на винт, имеет удельный вес 1–2 кг/кг, т. е. в несколько десятков раз больше. Важно также то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости.

ЖРД для ракетного самолета

Фиг. 32. Проект ЖРД с регулируемой тягой.

1 — передвижная игла; 2 — механизм передвижения иглы; 3 — подача горючего; 4 — подача окислителя.

Основное требование, предъявляемое к авиационному жидкостно-реактивному двигателю — возможность изменять развиваемую им тягу в соответствии с режимами полета самолета, вплоть до остановки и повторного запуска двигателя в полете. Наиболее простой и распространенный способ изменения тяги двигателя заключается в регулировании подачи топлива в камеру сгорания, вследствие чего изменяется давление в камере и тяга. Однако этот способ невыгоден, так как при уменьшении давления в камере сгорания, понижаемого в целях уменьшения тяги, уменьшается доля тепловой энергии топлива, переходящая в скоростную энергию струи. Это приводит к увеличению расхода топлива на 1 кг тяги, а следовательно, и на 1 л. с. мощности, т. е. двигатель при этом начинает работать менее экономично. Для уменьшения этого недостатка авиационные ЖРД часто имеют вместо одной от двух до четырех камер сгорания, что позволяет при работе на пониженной мощности выключать одну или несколько камер. Регулирование тяги изменением давления в камере, т. е. подачей топлива, сохраняется и в этом случае, но используется лишь в небольшом диапазоне до половины тяги отключаемой камеры. Наиболее выгодным способом регулирования тяги ЖРД было бы изменение проходного сечения его сопла при одновременном уменьшении подачи топлива, так как при этом уменьшение секундного количества вытекающих газов достигалось бы при сохранении неизменным давления в камере сгорания, а, значит, и скорости истечения. Такое регулирование проходного сечения сопла можно было бы осуществить, например, с помощью передвижной иглы специального профиля, как это показано на фиг. 32, изображающей проект ЖРД с регулируемой таким способом тягой.

На фиг. 33 представлен однокамерный авиационный ЖРД, а на фиг. 34 — такой же ЖРД, но с добавочной небольшой камерой, которая используется на крейсерском режиме полета, когда требуется небольшая тяга; основная камера при этом отключается совсем. На максимальном режиме работают обе камеры, причем большая развивает тягу в 1700 кг, а малая — 300 кг, так что общая тяга составляет 2000 кг. В остальном двигатели по конструкции аналогичны.

Двигатели, изображенные на фиг. 33 и 34, работают на самовоспламеняющемся топливе. Это топливо состоит из перекиси водорода в качестве окислителя и гидразин-гидрата[16] в качестве горючего, в весовом соотношении 3:1. Точнее, горючее представляет собой сложный состав, состоящий из гидразин-гидрата, метилового спирта и солей меди в качестве катализатора, обеспечивающего быстрое протекание реакции (применяются и другие катализаторы). Недостатком этого топлива является то, что оно вызывает коррозию частей двигателя.

Вес однокамерного двигателя составляет 160 кг, удельный вес равен  на килограмм тяги. Длина двигателя — 2,2 м. Давление в камере сгорания — около 20 ата. При работе на минимальной подаче топлива для получения наименьшей тяги, которая равна 100 кг, давление в камере сгорания уменьшается до 3 ата. Температура в камере сгорания достигает 2500 °C, скорость истечения газов около 2100 м/сек. Расход топлива равен 8 кг/сек, а удельный расход топлива составляет 15,3 кг топлива на 1 кг тяги в час.

Фиг. 33. Однокамерный ЖРД для ракетного самолета

Фиг. 34. Двухкамерный авиационный ЖРД.

Фиг. 35. Схема подачи топлива в авиационном ЖРД.

Схема подачи топлива в двигатель представлена на фиг. 35. Как и в двигателе ракеты, подача горючего и окислителя, хранящихся в отдельных баках, производится под давлением около 40 ата насосами, имеющими привод от турбинки. Общий вид турбонасосного агрегата показан на фиг. 36. Турбинка работает на паро-газовой смеси, которая, как и раньше, получается в результате разложения перекиси водорода в парогазогенераторе, который в этом случае наполнен твердым катализатором. Горючее до поступления в камеру сгорания охлаждает стенки сопла и камеры сгорания, циркулируя, в специальной охлаждающей рубашке. Изменение подачи топлива, необходимое для регулирования тяги двигателя в процессе полета, достигается изменением подачи перекиси водорода в парогазогенератор, что вызывает изменение оборотов турбинки. Максимальное число оборотов турбинки равно 17 200 об/мин. Запуск двигателя осуществляется с помощью электромотора, приводящего во вращение турбонасосный агрегат.

Фиг. 36. Турбонасосный агрегат авиационного ЖРД.

1 — шестерня привода от пускового электромотора; 2 — насос для окислителя; 3 — турбина; 4 — насос для горючего; 5 — выхлопной патрубок турбины.

На фиг. 37 показана схема установки однокамерного ЖРД в хвостовой части фюзеляжа одного из опытных ракетных самолетов.

Назначение самолетов с жидкостно-реактивными двигателями определяется свойствами ЖРД — большой тягой и, соответственно, большой мощностью на больших скоростях полета и больших высотах и малой экономичностью, т. е. большим расходом топлива. Поэтому ЖРД обычно устанавливаются на военных самолетах — истребителях-перехватчиках. Задача такого самолета — при получении сигнала о приближении самолетов противника быстро взлететь и набрать большую высоту, на которой обычно летят эти самолеты, а затем, используя свое преимущество в скорости полета, навязать противнику воздушный бой. Общая продолжительность полета самолета с жидкостно-реактивным двигателем определяется запасом топлива на самолете и составляет 10–15 минут[17], поэтому эти самолеты обычно могут совершать боевые операции лишь в районе своего аэродрома.

Фиг. 37. Схема установки ЖРД на самолете.

Фиг. 38. Ракетный истребитель (вид в трех проекциях)

На фиг. 38 показан истребитель-перехватчик с описанным выше ЖРД. Размеры этого самолета, как и других самолетов этого типа, обычно невелики. Полный вес самолета с топливом составляет 5100 кг; запаса топлива (свыше 2,5 тонны) хватает только на 4,5 минуты работы двигателя на полной мощности. Максимальная скорость полета — свыше 950 км/час; потолок самолета, т. е. максимальная высота, которой он может достигнуть, — 16 000 м. Скороподъемность самолета характеризуется тем, что за 1 минуту он может подняться с 6 до 12 км.

Фиг. 39. Устройство ракетного самолета.

На фиг. 39 показано устройство другого самолета с ЖРД; это — опытный самолет, построенный для достижения скорости полета, превышающей скорость звука (т. е. 1200 км/час у земли). На самолете, в задней части фюзеляжа, установлен ЖРД, имеющий четыре одинаковых камеры с общей тягой 2720 кг. Длина двигателя 1400 мм, максимальный диаметр 480 мм, вес 100 кг. Запас топлива на самолете, в качестве которого используются спирт и жидкий кислород, составляет 2360 л.

Фиг. 40. Четырехкамерный авиационный ЖРД.

Внешний вид этого двигателя показан на фиг. 40.

Другие области применения ЖРД

Наряду с основным применением ЖРД в качестве двигателей для дальних ракет и ракетных самолетов они применяются в настоящее время и в ряде других случаев.

Довольно широкое применение получили ЖРД в качестве двигателей тяжелых ракетных снарядов[18], подобных представленному на фиг. 41. Двигатель этого снаряда может служить примером простейшего ЖРД. Подача топлива (бензин и жидкий кислород) в камеру сгорания этого двигателя производится под давлением нейтрального газа (азота). На фиг. 42 показана схема тяжелой ракеты, применявшейся в качестве мощного зенитного снаряда; на схеме приведены габаритные размеры ракеты.

Применяются ЖРД и в качестве стартовых авиационных двигателей. В этом случае иногда используется низкотемпературная реакция разложения перекиси водорода, отчего такие двигатели называют «холодными».

Имеются случаи применения ЖРД в качестве ускорителей для самолетов, в частности, самолетов с турбореактивными двигателями. Насосы подачи топлива з этом случае приводятся иногда от вала турбореактивного двигателя.

ЖРД применяются наряду с пороховыми двигателями также для старта и разгона летающих аппаратов (или их моделей) с прямоточными воздушно-реактивными двигателями. Как известно, эти двигатели развивают очень большую тягу при высоких скоростях полета, больших скорости звука, но вовсе не развивают тяги при взлете.

Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.

В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных

Фиг. 41. Ракетный снаряд с ЖРД.

двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.

Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.

7 — боевая головка; 2 — баллон со сжатым азотом; 3 — бак с окислителем; 4 — бак с горючим; 5 — жидкостно-реактивный двигатель.

По другому способу сооружается специальная ракетная тележка, передвигающаяся по рельсам с помощью ЖРД. Результаты испытания профиля, установленного на такой тележке в особом весовом механизме, записываются специальными автоматическими приборами, расположенными также на тележке. Такая ракетная тележка показана на фиг. 43. Длина рельсового пути может достигать 2–3 км.

Фиг. 43. Ракетная тележка для испытания профилей крыльев самолета.