5. Телекамеры в системах видеонаблюдения
5. Телекамеры в системах видеонаблюдения
Самый первый и наиболее важный элемент системы видеонаблюдения — это элемент, формирующий изображение, то есть телекамера.
Общие сведения о телекамерах
Термин «камера» произошел от латинского camera obscura, что означает «темная комната».
В средние века такие комнаты использовали художники. Затемненная комната кубической формы с выпуклой линзой с одной стороны и экраном, на который проецировалось изображение с другой, использовалась художниками для формирования изображений и последующей их зарисовки.
В XIX веке под «камерой» понимали устройство записи изображений на пленку или другой светочувствительный материал. Она состояла из светозащищенной коробки, объектива, через который проходил и фокусировался свет, затвора, контролировавшего продолжительность раскрытия объектива, и диафрагмы, регулировавшей количество проходящего через стекло света.
В 1826 г. Иозеф Найсфор Нипс (Joseph Рис. 5.1 Nicephore Niepce) получил первое негативное изображение на пленке. Так зародилась фотография.
Вначале фотографические камеры не сильно отличались от концепции камеры-обскуры. Они представляли собой черную коробку с объективом впереди и фотопластинкой сзади. Начальная установка изображения и фокусировка делались на основе перевернутой «вверх ногами» проекции, которую фотограф мог видеть, только прикрывшись черной накидкой.
Первая коммерческая фотокамера была снабжена механизмом ручной подачи пленки и видоискателем (или окуляром), который давал приблизительный обзор, видимый объективом.
Сегодня мы используем термин «камера» в киносъемке, фотографии, телевидении и мультимедиа. Камера проецирует изображение на различные мишени, но во всех камерах используется свет и объективы (В русском языке большое разнообразие значений слова «камера» — фотокамера, кинокамера, видеокамера, тюремная камера, воздушная камера, футбольная камера, газовая камера, камера хранения, велосипедная камера и т. д. Разумно для устройств, применяемых в видеонаблюдении использовать термин «телекамера». Прим. ред.).
Чтобы понять, что же такое система видеонаблюдения, необязательно быть экспертом по телекамерам и знатоком оптики, но если вы понимаете основы, то это вам здорово поможет.
Многое тут аналогично фотографии, а поскольку каждый из нас когда-либо пробовал свои силы в семейной фотографии, то нам нетрудно будет провести аналогии между видеонаблюдением и фотографией или домашним видео.
В фотографии и кинокамерах происходит преобразование оптической информации (изображений) в отпечатки на химической эмульсии (пленке). В телевизионных камерах происходит преобразование оптической информации в электрический сигнал. Во всех случаях используются объективы с определенным фокусным расстоянием и углом обзора, различными для различных форматов.
Объективам свойственны ограниченная разрешающая способность и наличие искажений (или аберраций), и особенно это заметно в пленочных камерах. Это происходит потому, что разрешение пленки все еще гораздо выше, чем разрешение электронных камер, хотя с каждым днем появляются все новые и новые ПЗС-матрицы более высокого разрешения.
Для примера, используемые в видеонаблюдении ПЗС-матрицы высокого разрешения содержат 752 х 582 пикселов (элементов изображения), а цветная негативная 35-мм пленка в 100 ISO имеет разрешение, эквивалентное 8000 х 6000 элементов (эмульсионных зерен пленки). Типичное разрешение пленки — 120 линий на мм.
В 1997 г. на рынке появился еще один тип камер. Такие камеры используются вместе с компьютерами в видеоконференциях и для хранения цифровых изображений. В этих камерах в качестве фотоприемника используется ПЗС-матрица — вместо аналогового электрического сигнала или проекции изображения на пленку камера преобразует изображение в цифровой формат и записывает его на микродиск или RAM-карту, с которых изображение легко перенести в компьютер. Большинство таких камер дают статические кадры, но появляются и камеры, дающие видеосигнал в цифровом формате в реальном режиме времени.
Рис. 5.2. Одна из ранних телевизионных камер (1931 г.)
Телекамеры с передающими трубками
Первые эксперименты с телевизионными камерами состоялись в 1930-х и были проведены инженером русского происхождения Владимиром Зворыкиным (Zworykin) (1889–1982). Его первая камера, созданная в 1931 г., фокусировала изображение на мозаику из фотоэлементов. Напряжение в каждом элементе было мерой интенсивности света в каждой точке и могло быть преобразовано в электрический сигнал.
Эта концепция, не считая небольших модификаций, осталась неизменной в течение десятков лет.
Первые камеры изготовлялись из стеклянных трубок и светочувствительного люминофорного покрытия на внутренней поверхности стекла. Сегодня мы называем их передающими трубками.
Рис. 5.3. Студийная телевизионная камера с передающей трубкой (1952 г.)
Работают передающие трубки по принципу фоточувствительности, основанному на фотоэффекте. Свет, проецируемый на люминофорный слой трубки (называемый мишенью) обладает энергией, достаточной, чтобы вызвать выбивание электронов из кристаллической решетки люминофора.
Число выбиваемых электронов пропорционально свету, и таким образом формируется электрическое представление световой проекции.
При появлении видеонаблюдения существовало два основных типа трубок: видиконы и ньювиконы.
Видикон был дешевле и менее чувствителен. Так называемый автоматический контроль потенциала мишени эффективно контролировал чувствительность видикона и косвенно выполнял функции электронного затвора, как сегодня мы называем этот процесс в ПЗС-телекамерах. Поэтому видиконы работали только с объективами с ручной установкой диафрагмы. Минимальная освещенность, необходимая для того, чтобы черно-белый видикон сформировал видеосигнал, составляла порядка 5-10 лк, отраженных от объекта, при использовании объектива F/1.4.
Телекамеры типа ньювикон были более чувствительны (до 1 люкса), более дорогие и требовали объективов с автодиафрагмой. Внешне они выглядели так же, как и видиконы, так что на вид их различить было непросто. Только опытный специалист по видеонаблюдению мог заметить небольшие отличия в цветах области мишени: у видикона есть темно-фиолетовая составляющая, а у ньювикона — темно-синяя. Два типа телекамер управляются различной электроникой, а телекамеры типа ньювикон снабжены разъемом автодиафрагмы.
Рис. 5.4. Принцип работы передающей трубки
Работа всех передающих трубок основывается на принципе сканирования электронным лучом мишени внутри трубки под действием электромагнитного поля. Луч отклоняется электромагнитным полем, генерируемым электронной системой камеры. Чем больше света достигает светочувствительного слоя мишени, тем ниже ее сопротивление в этом месте. При проецировании изображения, благодаря фотоэффекту, формируется потенциальный рельеф. Когда анализирующий электронный луч сканирует фоточувствительный слой, он нейтрализует положительные заряды, так что по локальным сопротивлениям протекает ток. Когда электронный луч попадает в конкретную часть потенциального рельефа, электрический ток теряет заряд пропорционально количеству света. Этот очень слабый ток — порядка пикоампер (1 пА = 1012 А) — подается на видеоусилитель с очень высоким входным сопротивлением, который и формирует напряжение видеосигнала. В трубке должен быть тонкий и однородный фотослой — это очень важно. Этот слой порождает так называемый теневой ток, который существует даже тогда, когда объектив не проецирует изображение (диафрагма закрыта).
После того, как сигнал сформирован, электронная система телекамеры добавляет синхроимпульсы, и на выходе телекамеры мы получаем полный видеосигнал, называемый композитным видеосигналом.
Функционирование передающих трубок опирается на несколько важных концепций, сейчас мы их кратко рассмотрим; это необходимо для того, чтобы оценить разницу между этой и новой ПЗС-технологией.
Рис. 5.5. Внутреннее устройство телекамеры с передающей трубкой
Первое: большие габаритные размеры телекамеры как таковой — стеклянная трубка, окружающая ее электромагнитная отклоняющая система и размеры электронных компонент системы — все это делало телекамеры довольно громоздкими.
Второе: необходимость в использовании точного отклоняющего электромагнитного поля, которое заставляет электронный луч сканировать область мишени согласно телевизионным стандартам. Использование электромагнитной системы для сканирования означает, что внешние электромагнитные поля других источников могут влиять на процесс сканирования, вызывая искажения картинки.
Третье: необходимость высокого напряжения (до 1000 В) для придания ускорения электронному лучу и задания его траектории. Поэтому в телекамерах приходится использовать высоковольтные компоненты, что всегда представляет собой потенциальную проблему для устойчивости электронных схем. Старые и высоковольтные конденсаторы могут начать подтекать, влага может создать токопроводящий воздушный слой вокруг компонент и привести к возникновению искровых разрядов.
Четвертое: необходимость наличия люминофорного слоя на мишени, который преобразует световую энергию в электрическую информацию. Люминофор постоянно подвергается электронной бомбардировке, и слой со временем изнашивается. Срок службы люминофорного покрытия трубки ограничен. При постоянной эксплуатации телекамеры (как это и происходит в системах видеонаблюдения) реальный ресурс телекамеры составляет пару лет, после этого срока изображение начинает ослабевать, вследствие выжигания люминофора могут появиться «впечатанные» изображения — если телекамера постоянно направлена на один и тот же объект. В результате мы можем увидеть такую картину: движущиеся люди похожи на призраков, они полупрозрачны и сквозь них просвечивают «впечатанные» изображения.
Пятое: геометрические искажения, обусловленные тем, что луч падает на мишень под различными углами; эта черта принципиально отлична от используемых сегодня ПЗС-телекамер (и ее следует рассматривать как недостаток) и является врожденным свойством, наследуемым от конструкции трубки как таковой. В частности, траектория электронного луча короче, когда он попадает в центр мишени, по сравнению с его траекторией при сканировании краев. Поэтому возникают геометрические искажения проецируемого изображения. Во многих конструкциях введены магнитные и электронные системы коррекции таких искажений, но при каждом перемещении трубки приходится заново регулировать настройки.
Новая ПЗС-технология позволила исключить все эти проблемы. Однако вначале одна характеристика трубок на заре ПЗС-технологий была недосягаемой. Невозможно было достичь разрешающей способности, соответствующей хорошей передающей трубке.
Разрешающая способность по вертикали зависит от стандарта сканирования, и оно более-менее одинаково и для ПЗС-телекамер, и для передающих трубок, но разрешающая способность по горизонтали (т. е. число воспроизводимых вертикальных линий) зависит от толщины электронного луча.
Этот фактор вполне успешно контролируется электронной системой, что позволяет воспроизводить очень тонкие детали при сканировании.
Рис. 5.6. Сравнение физических размеров передающей трубки и ПЗС-матрицы
Вначале микроэлектронная технология была не в состоянии создать элемент изображения (пиксел) на ПЗС-матрице меньший, чем поперечное сечение электронного луча. Это означает, что на заре технологии ПЗС-матриц их разрешение значительно отставало от разрешения трубок.
Однако очень скоро удалось повысить разрешение ПЗС-матриц, так что оно стало сравнимо с качеством телекамер с передающими трубками.
ПЗС-телекамеры
ПЗС — это прибор с зарядовой связью.
В 1970-х, когда появились первые персональные компьютеры, начались эксперименты с полупроводниковыми электронными компонентами — приборами с зарядовой связью — которые вначале предполагалось использовать в качестве запоминающих устройств.
Очень скоро выяснилось, что ПЗС очень чувствительны к свету, и поэтому их лучше и эффективнее использовать в качестве светоприемников, а не в качестве запоминающих устройств.
Основной принцип работы ПЗС заключается в сохранении информации электрических зарядов в фотоэлементах, а затем, когда потребуется, передаче этих зарядов на выходной каскад.
Если ПЗС-матрица используется в качестве фотоприемника, то концепция сдвига остается прежней, но вот вместо использования зарядовых пакетов для хранения цифровой информации (в случае, когда ПЗС-матрица служит запоминающим устройством), мы имеем фотоэлектронную генерацию электронов пропорционально количеству света, падающего на область формирования изображения, затем эти заряды сдвигаются вертикально и/или горизонтально так же, как сдвиговые регистры в цифровых схемах сдвигают двоичные значения.
Итак, зарядовые пакеты — как только они сформировались в фотоэлементах матрицы — «стекают» на выходной каскад при использовании методов зарядовой связи. Таким образом электрическая связь обеспечивается управлением напряжением и временем для каждой ячейки, называемой элементом изображения (пиксел).
Рис. 5.7. ПЗС-телекамера
Один из пионеров ПЗС-технологии, Гильберт Амелио, в своей статье, написанной в 1974 г., описывает зарядовую связь как «коллективный перенос всего мобильного электрического заряда, хранящегося на элементе полупроводниковой памяти на аналогичный сопряженный запоминающий элемент путем внешнего воздействия напряжением. Количество хранимого в мобильном пакете заряда может меняться в широких пределах в зависимости от приложенного напряжения и емкости запоминающих элементов. Величина электрического заряда в каждом пакете может представлять информацию».
ПЗС-чип может иметь либо линейную форму (линейный ПЗС), либо форму двумерной матрицы (ПЗС-матрица). Важно понимать, что они состоят из дискретных элементов (пикселов), но ПЗС-устройства не являются цифровыми устройствами. Каждый пиксел может содержать любое число электронов, пропорциональное падающему на него свету, таким образом представляя аналоговую информацию.
Дискретные пакеты электронов переносятся (если время экспонирования закончилось) одновременным сдвигом рядов и столбцов пакетов на внешний каскад чипа. Поэтому мы и говорим, что ПЗС-матрицы по сути своей являются светочувствительными аналоговыми сдвиговыми регистрами.
Сегодня ПЗС не используются в качестве запоминающих устройств, а только в качестве фотоприемников. Их можно найти во многих устройствах, с которыми мы сталкиваемся каждый день: в факсимильных аппаратах, сканерах используются линейные ПЗС; во многих фотокамерах с автофокусом используются ПЗС-чипы автофокусировки; в географическом аэромониторинге, космическом зондировании планеты, промышленном обследовании материалов тоже применяются камеры с линейными ПЗС, и наконец, хотя это и не последнее, многие современные телевизионные камеры, как в широком телевещании, так и в системах видеонаблюдения, используют ПЗС-чипы.
ПЗС-телекамеры обладают многими преимуществами (конструктивными) перед телекамерами с передающими трубками, хотя, как ранее упоминалось, поначалу возникали трудности с разрешающей способностью. В наши дни технология достигла такого уровня, что высокое разрешение больше не проблема.
Рис. 5.8. Уже давно эти разные технологии выполняют одинаковую работу (телекамера с ПЗС-матрицей и телекамера с передающей трубкой)
Вот основные преимущества ПЗС-телекамер в сравнении с телекамерами на передающих трубках:
— очень низкая минимальная освещенность (для черно-белых до 1 лк на объекте);
— отсутствие геометрических искажений благодаря точной двумерной конструкции;
— низкое энергопотребление;
— не требуется высокое напряжение для ускорения луча;
— маленькие размеры;
— не подвержены воздействию внешних электромагнитных полей;
— и самое важное неограниченное время жизни электронов, генерируемых фотоэффектом.
Рис. 5.9. Фотоны создают электроны в ПЗС-матрице
Рис. 5.10. Линейные ПЗС используются для получения фотографий со спутников
Как мы уже говорили раньше, ПЗС бывают всех форм и размеров, но основная классификация — это деление на линейные и двумерные матрицы. Линейные чипы используются в тех случаях, когда объекты движутся только в одном направлении (как в факсимильных аппаратах и сканерах).
В видеонаблюдении нас интересуют только двумерные матрицы, так называемые матрицы размеров 2/3", 1/2", 1/3".
Мы уже рассказывали, что эти размеры не представляют диагональные размеры матриц, как можно подумать, а соответствуют диаметрам передающих трубок, дающих такое же изображение.
Чувствительность и разрешение ПЗС-матриц
Сравнение по чувствительности покажет нам преимущества ПЗС-матриц в отношении видикона и ньювикона, а также в отношении эмульсии пленки.
В фотографии чаще всего используется пленка в 100 ISO, хотя можно приобрести пленку в 200 ISO (в два раза более чувствительную) или 400 ISO (в четыре раза чувствительнее, чем пленка 100 ISO).
Иногда можно даже встретить пленку в 1600 ISO, которая обычно применяется в ситуациях чрезвычайно низкой освещенности (в терминах фотографии).
Можно показать, что средняя черно-белая ПЗС-матрица имеет очень высокую чувствительность в сравнении с эмульсией пленки. В ясный солнечный день для типичной пленки в 100 ISO потребуются установки фотокамеры на 1 /125 с и F/16. Если на ту же сцену направить ПЗС-телекамеру, у которой нормальная выдержка CCIR затвора составляет 1/50 с, то следует использовать объектив примерно с F/1000 (плюс-минус одно F-число, так как АРУ телекамеры тоже играет роль). Если мы изменим 1/50 на 1/125 (в 2.5 раза короче), то чтобы получить ту же экспозицию, объектив должен быть раскрыт на 2.5 значения F-числа шире, чтобы скомпенсировать сокращение времени выдержки. Это даст нам вместо F/1000 примерно F/400 (вы помните F-числа: 1.4, 2, 2.8, 4, 5.6, 8,11,16, 22, 32, 44, 64, 88, 128, 180, 250, 360, 500, 720, 1000, 1400 и т. д.). Теперь, чтобы перевести чувствительность эмульсии пленки от 100 ISO 1/125 и F/16 к эквивалентным установкам пленки более высокой чувствительности, зная, что чувствительность увеличивается вдвое с удвоением единиц ISO, мы получим изменение диафрагменного числа в 9.5 раз, от F/16 до F/400. Это примерно 29.5 = 720 раз. Итак, средняя чувствительность черно-белой ПЗС-матрицы, выраженная в фотографических единицах ISO, равна примерно 100 ISOx720 = 72 000 ISO!
Рис. 5.13. Принцип работы ПЗС-телекамеры
Рис. 5.14. Элемент изображения ПЗС
Аналогично мы можем найти, что эквивалентная чувствительность цветной ПЗС-телекамеры равна примерно 5000 ISO, что тоже немало по фотостандартам.
Химическая (пленочная) фотография постепенно соединяется с электронными камерами. Говоря о компьютеризации фотографических процессов и цифровых технологиях, а также о появлении различных фотостандартов CD, следует отметить, что фотокамеры тоже претерпевают революционные изменения, и мы скоро увидим новые фотокамеры на ПЗС с увеличенной светочувствительностью.
Такие камеры не зависят от ТВ-стандартов, поэтому нет практически никаких ограничений на число пикселов и соотношение сторон. Даже когда еще только создавалась эта книга, производители начали изготавливать матрицы размером всего 62 мм х 62 мм, с не менее 5120 х 5120 элементов изображения. Как уже упоминалось, все это касается фотокамер, и не стоит их путать с телекамерами для видеонаблюдения.
Спектральная чувствительность ПЗС-матриц зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет. Типичная спектральная кривая ПЗС-матрицы показана на рис. 5.15.
Рис. 5.15. Спектральная чувствительность глаза и ПЗС-матрицы
Даже если такое «проникновение» может показаться выигрышным (кажется, что ПЗС-матрица становится более чувствительна), имеются причины предотвращения проникновения более длинных волн глубоко внутрь матрицы. В частности, такие волны могут быть настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении могут пропасть мелкие детали, потому что заряд ячеек растечется по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания» (blooming). Может быть затронута также и масковая зона, предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут в значительной степени возрасти шум и вертикальный ореол (smear).
Поэтому в усовершенствованных ПЗС-телекамерах применяются специальные оптические инфракрасные отсекающие фильтры. Эти фильтры представляют собой оптически точные плоскопараллельные пластинки, монтируемые сверху ПЗС-матрицы. Они ведут себя как оптические низкочастотные фильтры с частотой среза порядка 700 нм, вблизи красного цвета.
Однако, ряд производителей черно-белых телекамер предпочитает не использовать такие фильтры, чтобы не ослаблять их чувствительность. Это приемлемо в тех случаях, когда предполагается использовать телекамеру в условиях низкой освещенности или в систему входят источники инфракрасного света, однако с теоретической точки зрения телекамера с инфракрасным отсекающим фильтром имеет более высокую разрешающую способность (по сравнению с такой же ПЗС-матрицей без ИК-отсекающего фильтра), лучшее отношение сигнал/шум и более естественное преобразование цветного изображения в черно-белое при не такой уж низкой чувствительности.
Рис. 5.16. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС-матрицы
В цветных ПЗС-камерах, напротив, нужно использовать ИК-отсекающий фильтр, так как спектральная характеристика ПЗС-матрицы, которая отлична от характеристик человеческого глаза, должна соответствовать спектральной чувствительности человеческого глаза. Это к тому же одна из причин того, почему цветные ПЗС-камеры менее чувствительны, чем ч/б.
Типичная черно-белая ПЗС-матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала всего на 0.01 лк. Та же телекамера с ИК-фильтром потребует освещенности на объекте в 0.1 лк.
Современные цветные телекамеры характеризуются минимальной освещенностью на объекте в 2 лк при F/1.4 и дают видеосигнал приемлемого уровня (от 0.3 до 0.5 В).
Развитие ПЗС-технологии достигло такого уровня, что стало возможно производство матриц с несколькими миллионами пикселов. В цифровой фотографии 6-мегапиксельные матрицы стали уже привычными, а производители пытаются добиться и большего. Что касается систем видеонаблюдения, то здесь мы ограничены стандартами аналогового телевидения, поэтому сейчас редко встречаются ПЗС-матрицы с разрешением выше, чем, например, 752x584 пикселов, что дает примерно 400,000 пикселов.
О разрешении и о том, как его измерять, мы подробнее расскажем немного позже, но сейчас хотелось бы остановиться на нескольких очень перспективных решениях, которые, строго говоря, не являются телекамерами для видеонаблюдения, но позволяют получить очень высокое разрешение.
Одно из таких решений было разработано компанией Spectrum San Diego, которое называется SentryScope и позволяет получать изображение с разрешением 21 миллион пикселов. В основе SentryScope лежит линейный ПЗС с 2048 пикселами, который формирует изображение примерно так же, как это делают спутники при фотографировании земной поверхности. В SentryScope используется поворачивающееся зеркало, которое отражает на линейный ПЗС линии формируемого изображения. Поворачивающееся зеркало сканирует широкую область, которая эквивалентна 10,000 пикселов. Эта система не создает видеосигнал как таковой, но позволяет формировать изображение (с помощью ПК) с очень высокой степенью детализации.
Рис. 5.17. Ч/б ПЗС-матрица без инфракрасного отсекающего фильтра
Рис. 5.18. Цветная ПЗС-матрица с инфракрасным отсекающим фильтром
Рис. 5.19. Различные типы ПЗС-матриц
Сейчас появилось немало и других интересных решений, позволяющих повысить разрешение. В качестве примера можно привести телекамеру, разработанную компанией Co-Vi. В этой телекамере используется ПЗС-матрица с более высоким разрешением, чем обычно (1280x720 пикселов). Полученное изображение высокого разрешения затем масштабируется до стандартного разрешения, чтобы получить аналоговый видеосигнал. Основное отличие предложенного решения заключается в том, что при увеличении участка изображения разрешение не снижается, так как при увеличении фактически "вырезается" часть изображения высокого разрешения (чуть менее 1 миллиона пикселов). Для пользователя это похоже на работу с поворотной телекамерой с двукратным увеличением, что позволяет увидеть больше деталей.
Некоторые разработчики систем видеонаблюдения применяют еще одно интересное решение, в рамках которого используются стандартные телекамеры с длиннофокусными объективами, которые организованы в матрицы 3x3 или даже 4x4 телекамеры и направлены на какой-то объект таким образом, что поле их зрения друг с другом немного пересекается. Полученные изображения передаются на стену, состоящую из 3x3 или 4x4 мониторов, что дает суммарное разрешение от 3.6 до 6.4 миллионов пикселов. В результате получается очень большое и детализированное изображение, которое можно записать и на обычный цифровой видеорегистратор стандартного разрешения.
Рис. 5.20. Телекамера Sentry-Scope с ПЗС-матрицей и разрешением 21 миллион пикселов позволяет разглядеть очень мелкие детали
Типы переноса зарядов в ПЗС
В отношении способа переноса заряда используемые в видеонаблюдении ПЗС-матрицы можно подразделить натри группы.
Самый первый проект, относящийся к началу 1970-х, назывался покадровым переносом (frame transfer). Такой тип ПЗС-матриц разделен на две области равного размера — область изображения и маску, одна находится над другой.
Рис. 5.21. Телекамера от Со-Vi с матрицей 1280x720 пикселов
Рис. 5.22. Принцип работы прибора с зарядовой связью (ПЗС)
Рис. 5.23. Принцип кадрового переноса
Область изображения подвергается воздействию света в течение 1/50 с в соответствии с CCIR видеостандартом (1/60 с для EIA). Затем, в течение кадрового синхроимпульса, все сгенерированные светом заряды (электронное представление оптического изображения, спроецированного на ПЗС-матрицу), сдвигаются вниз на область маски (см. упрощенную схему на рис. 5.24). В общем, весь «кадр изображения» «спускается» вниз.
Рис. 5.24. Принцип строчного переноса
Обратите внимание на перевернутость спроецированного изображения, именно так оно выглядит в реальной ситуации, т. е. объектив проецирует изображение «вверх ногами», и при воспроизведении на видеомониторе нижний правый пиксел попадает в верхний левый угол.
В течение следующих 1/50 с область изображения генерирует электроны нового кадра, а в это время электронные пакеты в области-маске сдвигаются в горизонтальном направлении, строка за строкой. Пакеты электронов (ток) от каждого пиксела складываются в один сигнал и преобразуются в напряжение, формируя информацию телевизионной строки.
С технической точки зрения более точно было бы называть такую операцию «переносом поля», а не «кадровым переносом», но такой термин использовался с ранних дней разработки ПЗС, и мы примем его таковым, каков он есть.
Первая ПЗС-матрица была хороша. Она обладала на удивление хорошей чувствительностью в сравнении с ньювиконами и гораздо лучшей чувствительностью, чем видиконы, но появилась новая проблема, неведомая камерам-трубкам — вертикальное смазывание (или вертикальный ореол) (vertical smearing). В частности, в период между двумя последовательными экспозициями, когда активен перенос заряда, ничто не мешает свету генерировать дополнительные электроны. Понятно, ведь электронные камеры не имеют механизма механического затвора, как фото- или пленочные камеры. И там, где на проекции изображения присутствуют области интенсивного света, появляются яркие вертикальные полосы.
Чтобы разрешить эту проблему, инженеры изобрели новый способ переноса — строчный перенос. Разница заключается в том (см. упрощенный чертеж на рис. 5.24), что экспонируемая картинка переносится не вниз во время периода кадрового синхроимпульса, а сдвигается на левые колонки области маски. Колонки изображения и маски соседствуют друг с другом, перемежаются. Поскольку колонки пикселов маски находятся рядом с колонками пикселов изображения (правее), то сдвиг происходит значительно быстрее, и на генерацию нежелательного сигнала в областях ярких пятен — вертикальный ореол — остается не так много времени.
Если быть точным, вертикальный ореол все равно появляется, но в гораздо меньшей степени. К тому же существенно увеличивается отношение сигнал/шум.
У матриц со строчным переносом зарядов есть один недостаток, который исходит из самой концепции: чтобы добавить колонки-маски рядом с колонками изображения и разместить все это на площади, равной площади матрицы с кадровым переносом, приходится уменьшать размер светочувствительных пикселов. Это снижает чувствительность матриц. Но в сравнении с получаемыми преимуществами, этот недостаток несущественен.
Еще одно интересное преимущество — это возможность использовать электронный затвор в ПЗС. Это очень привлекательная возможность, ведь естественным временем экспозиции в 1/50 с (1/60 с для NTSC) можно электронным образом управлять и уменьшать до необходимых значений, продолжая выдавать видеосигнал размахом 1 Vpp.
Вначале для ПЗС-матриц со строчным переносом предлагалось использовать ручное управление электронным затвором, но очень скоро появилась и автоматическая версия. Такой тип управления называется автоматической ПЗС-диафрагмой или электронной диафрагмой (electronic iris).
Электронная диафрагма устраняет необходимость в использовании объективов с автодиафрагмой.
Объективы с ручной установкой диафрагмы могут использоваться с телекамерами с электронной диафрагмой даже в уличных условиях (Далеко не во всех случаях, так как динамического диапазона электронного затвора может быть недостаточно для отработки изменений уличного света. Прим. ред.). Однако следует отметить, что электронная диафрагма не может контролировать функцию глубины резкости, обеспечиваемую механической диафрагмой объектива. И следует также помнить, что, когда электронная диафрагма переключается на более высокие скорости затвора, из-за низкой эффективности переноса заряда возрастает вертикальный ореол.
Рис. 5.25. Сравнение традиционных схем с микролинзами и новой концепции Exwave фирмы Sony
Рис. 5.26. Структура ПЗС-матрицы с микролинзами, фотография сделана электронным микроскопом
Итак, если включен электронный затвор, он может переключаться в пределах от нормальной скорости экспозиции в 1/50 с (1/60 с) до более высокой (менее продолжительной) в зависимости от условий освещенности. Теоретически экспозиции, длиннее 1/50 с (1/60 с для EIA), не могут использоваться из-за потери ощущения движущегося изображения. В некоторых ПЗС-телекамерах возможны более длительные экспозиции, и такой режим называется интеграцией (накоплением заряда. Прим. ред.). В некоторых последних разработках, включающих цифровую обработку сигнала, интеграция включается автоматически, когда освещенность объекта падает ниже заданного уровня. Это особенно ценно в отношении цветных телекамер, но пока реализовано только для черно-белых телекамер (В современных цветных телекамерах с целью повышения их чувствительности реализован режим День/Ночь, благодаря чему при уменьшении освещенности ниже определенного уровня телекамера автоматически переключается на работу в черно-белом режиме. Прим. ред.). Плата за это — потеря гладкости движения (в режиме накопления мы не можем получить 50 полей/с), которая заменяется видимостью движения, аналогичной прерывистому воспроизведению с time-lapse видеомагнитофона.
Уменьшение размеров пиксела в матрицах со строчным переносом косвенно снижает минимальную освещенность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это не очень легко) — поверх каждого пиксела помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксел, и эффективно увеличивает минимальную освещенность. На сегодняшний день наибольшее распространение в видеонаблюдении получили матрицы со строчным переносом заряда.
Типичный разрез ПЗС-матрицы со строчным переносом и с микролинзами приведен на рис. 5.27.
Рис. 5.27. Типичная структура ПЗС-матрицы с микролинзами
Как видно, микроструктура матрицы становится довольно сложной, когда речь идет о высококачественном сигнале.
Самый лучший проект — это последняя разработка, матрица с кадрово-строчным переносом, которая обладает всеми характеристиками строчного переноса плюс уменьшение вертикального ореола и лучшее отношение сигнал/шум. Как можно заключить из упрощенной схемы, такая матрица работает со срочным переносом на верхней части матрицы, то есть имеет электронный затвор, но изображение не удерживается в колонках маски в течение экспозиции следующего поля, а сдвигается вниз в более защищенную область маски.
В такой матрице вертикальный ореол еще меньше, а также увеличивается отношение сигнал/шум.
Здесь также используются микролинзы для улучшения минимальной освещенности. ПЗС-матрицы с кадрово-строчным переносом заряда имеют еще более совершенную микроструктуру, множество ячеек и областей для предотвращения стекания избыточных зарядов на окружающие области, ловушки генерируемых теплом электронов и пр.
Матрицы с такими усовершенствованиями обладают очень высоким динамическим диапазоном, ослабленным вертикальным ореолом и высоким отношением сигнал/шум, что делает их идеальными для съемок на улице и видеожурналистики. Такие типы камер в широковещательном телевидении обычно называются камерами видеожурналистики.
Итак, матрицы с кадрово-строчным переносом для видеонаблюдения слишком дороги, и, в основном, используются в широковещательном ТВ.
Следует отметить, что независимо от того, насколько совершенна электроника телекамеры, если качество источника информации — ПЗС-матрицы — очень высокое, то и телекамера будет высшего качества. Противоположное тоже верно, т. е. даже если ПЗС-матрица наивысшего качества, но электроника камеры не в состоянии обработать ее наилучшим возможным способом, то весь комплект будет комплектом второго класса.
Также следует отметить, что большинство из немногочисленных производителей матриц подразделяют ПЗС-устройства одного типа на несколько классов, в зависимости от качества и однородности пикселов. Различные производители могут использовать различные классы для одного и того же типа матриц. Это в итоге отражается не только на качестве, но и на цене телекамеры.
Рис. 5.28. ПЗС-матрицы могут иметь самые разные размеры
Импульсы переноса зарядов в ПЗС-матрицах
Качество сигнала, даваемого ПЗС-матрицей, зависит от импульсов переноса заряда. Импульсы генерируются внутренним кварцевым генератором телекамеры. Частота зависит от многих факторов, но, в основном, от числа пикселов ПЗС-матрицы, типа переноса заряда (покадровый, строчный, кадрово-строчный), а также числа фаз для каждого элементарного сдвига зарядов, в частности, элементарный сдвиг может производиться двухфазным, трехфазным или четырехфазным сдвиговым импульсом. В видеонаблюдении наиболее распространены телекамеры с трехфазным импульсом переноса.
Как вы можете себе представить, кварцевый генератор камеры должен иметь частоту, по крайней мере, в несколько раз более высокую, чем полоса пропускания видеосигнала, формируемого телекамерой. Все другие синхроимпульсы, в том числе и импульсы переноса, формируются из этой тактовой частоты.
Рис. 5.29. Концепция кадрово-строчного переноса
На схеме рис. 5.30 показано, как происходит перенос заряда в рамках трехфазовой концепции.
Импульсы, обозначенные как фл, ф2 и ф3 это импульсы низкого напряжения (обычно от 0 до 5 В), поэтому ПЗС-камеры не нуждаются в высоком напряжении, как это обстояло с передающими трубками.
На рис. 5.30 показано, как формируются синхроимпульсы видеосигнала при помощи главного синхрогенератора.
Рис. 5.30. Тактовые импульсы ПЗС-матрицы генерируются главным синхрогенератором
Это только один из многих примеров, но он демонстрирует всю сложность и количество генерируемых в ПЗС-телекамере импульсов.
ПЗС-матрица как устройство дискретизации
Как мы уже говорили, используемая в видеонаблюдении ПЗС-матрица является двумерной, состоящей из элементов изображения (пикселов). Разрешающая способность, даваемая такой матрицей, зависит от числа пикселов и разрешающей способности объектива. Поскольку последняя обычно выше, чем разрешение ПЗС-матрицы, то мы не будем считать оптическое разрешение камнем преткновения. Однако, как говорилось в разделе ФПМ, объективы изготавливаются с разрешением, подходящим для конкретного размера изображения, и следует осторожно использовать соответствующую оптику с матрицами различного размера.
Есть и еще один важный момент, касающийся разрешения ПЗС, это отсутствие непрерывности ТВ-линий. ТВ-линия, даваемая телекамерой с передающей трубкой, получается в результате непрерывного сканирования электронным лучом вдоль строки. ПЗС-матрица состоит из дискретных пикселов, и поэтому информация одной ТВ-линии состоит из дискретных значений, соответствующих каждому пикселу. Этот метод дает не цифровую информацию, а скорее дискретную выборку. Таким образом ПЗС-матрица — это оптическое устройство дискретизации.
Как и в случае других устройств дискретизации, мы не получаем полную информацию по каждой строке, только дискретные значения в позициях, соответствующих позициям пикселов.
Может показаться, что восстановить непрерывный сигнал из отдельных его частей невозможно. Однако в 1928 г. Найквист показал, что сигнал может быть реконструирован без потери информации, если частота дискретизации равна, по меньшей мере, двойной ширине спектра сигнала (Точнее, не менее, чем в два раза больше самой высокочастотной составляющей спектра сигнала. В России это положение называют теоремой Котельникова. Прим. ред.). Значения сигнала между выборочными точками знать не обязательно. Это важная теорема, доказанная и используемая во многих электронных устройствах дискретизации, CD-аудио, видео и др. Частота дискретизации, эквивалентная удвоенной ширине спектра, называется частотой Найквиста.
Есть, однако, и нежелательный побочный продукт ПЗС-дискретизации. Это хорошо известная муаровая картина, которая получается в случаях, когда снимается объект с более высоким разрешением. Обычно это хорошо видно, например, если диктор, ведущий программу новостей, наденет рубаху с очень мелким узором. Математически это соответствует случаю, когда максимальная частота приближается к частоте дискретизации. Поскольку пространственная частота дискретизации должна быть в два раза больше максимальной частоты оптического изображения Fsmax, мы можем представить ее в частотной области одним значением частоты в области частоты Найквиста F^^.
Пространственный спектр оптического сигнала основной полосы частот будет модулироваться в окрестностях этой частоты, что очень похоже на амплитудную модуляцию спектра боковых полос.
Если в оптическом изображении, спроецированном на ПЗС-матрицу, присутствуют высокие частоты и эти частоты выше половины частоты FNYQUIST, то боковые полосы (после дискретизации) наложатся на видимую основную полосу, и в результате мы увидим нежелательную картинку, муар. Муаровая частота ниже самой высокой частоты телекамеры FNYQUIST/2-Fsmax
Чтобы минимизировать этот эффект применяется низкочастотная оптическая фильтрация (low-pass optical filtering, LPO). Фильтры обычно составляют часть стеклянной маски ПЗС-матрицы и формируются путем комбинирования нескольких двоякопреломляющих кварцевых пластин.
Эффект аналогичен размыванию (blurring) мелких деталей оптического изображения.
Рис. 5.31. ПЗС-матрица как устройство дискретизации
ПЗС-матрица из пикселов (разрешение немного ниже, чем у проецируемой на нее испытательной таблицы)
Двойная коррелированная выборка
Шум в ПЗС-матрице имеет несколько источников. Самый значительный — это тепловой шум, в существенной степени он может быть вызван примесями в полупроводниках и недостатками процесса производства.
Высокий уровень шума снижает динамический диапазон фотоэлемента, что в свою очередь ухудшает качество изображения.
Тщательное проектирование ПЗС-устройств и точное изготовление позволяют снизить шумы. Низкая рабочая температура может снизить тепловые шумы. К сожалению, пользователь редко способен управлять этими параметрами.
Однако, существует метод обработки сигнала, позволяющий существенно уменьшить шум, и этот метод может быть реализован в конструкции ПЗС-камеры. Этот метод называется двойная коррелированная выборка (ДКВ). Термин выборка здесь относится к выборке выходного сигнала.
Концепция ДКВ основана на том факте, что в видеосигнале и опорном сигнале существует одна и та же шумовая компонента. А именно, когда выходной каскад ПЗС-матрицы переносит зарядовый пакет, он преобразуется в выходное напряжение. Для этого используется плавающая считывающая диффузия, чтобы собирать зарядовые пакеты сигнала при их переносе с ПЗС-матрицы. По мере переноса зарядовых пакетов напряжение на считывающей диффузии падает. Это напряжение представляет собой данные видеосигнала и усиливается на матрице усилителем с термокомпенсацией. Прежде чем следующий зарядовый пакет сможет быть перенесен в область диффузии, она должна быть полностью очищена от предыдущего пакета. Это выполняет опорный сигнал сброса, который содержит такую же компоненту теплового шума, что и видеосигнал матрицы. Если заранее сохранить эту компоненту шума, то потом ее легко вычесть из результирующего сигнала, который содержит шум и полезный сигнал.
ДКВ лучше всего работает при использовании двух быстродействующих цепей выборки и фиксации, подсоединенных к выходному сигналу фотоприемника через низкочастотный фильтр.
Мы не будем углубляться в архитектуру этих цепей, так как это выходит за рамки данной книги, но следует помнить, что схема ДКВ является частью электронной системы телекамеры, а не ПЗС-матрицы.
Рис. 5.33. Двойная коррелированная выборка — один из способов уменьшения шума в ПЗС-матрице
Технические параметры телекамер и что они означают
Основные задачи телекамеры — захват изображений, разбиение их на ряд неподвижных кадров и строк, передача и быстрое воспроизведение на экране, в результате чего человеческий глаз воспринимает их как движущееся изображение.
Выбирая телекамеру, мы должны принимать во внимание ряд характеристик. Некоторые из них очень важны, другие не очень, все зависит от применения.
Невозможно судить о телекамере на основе только одной или двух характеристик, взятых из инструкции.
Различные производители используют различные критерии и методы оценки, и в большинстве случаев, даже если мы знаем, как интерпретировать все числа из технического паспорта, нам все же приходится самим оценивать качество изображения, сравнивая его с изображением, даваемым другой телекамерой.
Сравнительный тест — это зачастую наилучший и единственный объективный способ проверки характеристик телекамеры — вертикального ореола, шума, чувствительности и пр. Не забывайте, что общее впечатление о хорошем качестве изображения создается комбинацией многих факторов: разрешающей способности, ореола, чувствительности, шума, гамма-коррекции и пр.
Человеческий глаз не одинаково чувствителен ко всем этим факторам. Люди, не обладающие достаточным опытом, будут удивлены, узнав, что разница в разрешающей способности в 50 ТВЛ иногда менее важна для качества изображения, чем, например, правильная установка гамма-коррекции или разница в 3 дБ в отношении сигнал/шум.
Рассмотрим некоторые наиболее важные характеристики:
— Чувствительность телекамеры;
— Минимальная освещенность;
— Разрешающая способность телекамеры;
— Отношение сигнал/шум;
— Динамический диапазон.
Другие, менее важные, но тоже имеющие значение характеристики включают: гамма-коррекцию, темновой ток, спектральную чувствительность, оптическую низкочастотную фильтрацию, диапазон АРУ в дБ, энергопотребление, габаритные размеры и пр.
Чувствительность
Чувствительность телекамеры, четко определенная в широковещательном ТВ, в видеонаблюдении часто понимается неверно, ее обычно путают с минимальной освещенностью.
Чувствительность характеризуется минимальным отверстием диафрагмы (максимальным F-числом), дающим видеосигнал полного размаха 1 В на тестовой таблице, освещенность которой равна точно 2000 лк и создана источником с цветовой температурой 3200° К.
Тестовая таблица должна иметь шкалу градаций яркости от черного до белого и общий коэффициент отражения 90 % для белой части этой шкалы.
Одна из стандартных тестовых таблиц для этих целей — это градационная испытательная таблица EIA. Пиковый уровень белого должен составлять 700 мВ, а уровень черного — около 20 мВ. Гамма-коррекция тоже играет роль в правильном воспроизведении тонов серого и должна быть установлена на 0.45. Чтобы установить чувствительность телекамеры, требуется объектив с ручной установкой диафрагмы, обычно с фокусным расстоянием 25…50 мм. Чтобы измерения были корректны, следует отключить АРУ телекамеры.
Когда все вышеперечисленное проделано, ручную диафрагму объектива закрывают до тех пор, пока пиковый уровень белого (700 мВ относительно уровня гашения) не начнет уменьшаться.
Отметка установки диафрагмы — F/4 или F/5.6 — и дает чувствительность телекамеры. Чем больше это число, тем выше чувствительность телекамеры. При сравнении различных телекамер следует использовать одинаковый источник света и ту же испытательную таблицу.