Глава 25 Структура продольных волн
Глава 25 Структура продольных волн
Собственно, продольные волны создает любой колебательный процесс: тепловые вибрации атомов, изменение плотности электрического тока в проводнике, и даже любой процесс изменения плотности вещества (плотности энергии). Например, периодическое изменение объема емкости, наполненной газом, создает изменение плотности газовой среды внутри данной емкости, и соответствующую продольную волну плотности эфира. Каким образом мы можем получить движущую силу, за счет использования таких процессов?
Очевидно, что обычные синусоидальные колебательные процессы не создают суммарного смещения эфирной среды, так как импульс (произведение массы и скорости), передаваемый волной среде вперед и назад будет равен, а интегральный импульс равен нулю. Предлагается следующее решение: по аналогии с методом создания асимметрии импульса для инерциоидов, показанного на рис. 107, крутизна фронта продольной волны эфирной среды должна отличаться от крутизны спада данной волны.
Например, фронт волны может быть крутой, а спад – плавный. В таком случае, импульс, передаваемый окружающей среде при движении волны вперед, будет больше, чем импульс, передаваемый волной среде при ее движении назад. В результате, волна толкает среду в сторону от источника волны. Возможна и обратная ситуация, когда фронт продольной волны плавный, то есть нарастает медленно, а спад волны крутой. Такая волна «тянет» среду назад, к источнику волны.
Варианты продольных волн, как чередующихся областей сжатия и разряжения среды, условно показаны на рис. 118.
Рис. 118. Синусоидальная продольная волна, «толкающая» и «тянущая» волна
Слева – обычная синусоидальная волна, аналог звуковых вибраций в воздухе. Справа – варианты с «крутым фронтом» и «крутым спадом».
Данный метод позволяет создать в любой среде, в том числе, в эфирной среде, поток одного преимущественного направления, от источника или к источнику волны. Для разработки движителей, которые используют эфирообменные процессы, такой метод может оказаться полезным. В другом приложении, как метод концентрации или рассредоточения эфира, его «накачки» или «разряжения», данный способ асимметрии скорости процесса позволит создавать области увеличенной или уменьшенной плотности эфира.
Принцип асимметричного цикла объемного сжатия – расширения рабочего тела «эфирного насоса» также аналогичен работе инерциоида, показанного на рис. 107. Суть данного принципа в том, что импульс, передаваемый сферической волной окружающей среде при расширении рабочего тела, может быть не равен импульсу, передаваемой волной среде при сжатии рабочего тела, или наоборот. Данный метод предлагается для развития технологий эфирообменных движителей нового типа. Мы уже отмечали, в начале данной книги, что кроме реактивных, есть такие методы создания движущей силы, которые работают за счет перепада давления среды на движитель. Именно этот эффект и создается, в случае формирования области эфира повышенного или пониженного давления. Применение таких движителей имеет аналогии с обычным воздухоплаванием, но выходит за рамки пространственных измерений, что будет рассмотрено в главе о конструировании «машин времени».
Еще один комментарий по поводу козыревского понятия о скорости хода времени, как «псевдоскаляра», имеющего смысл линейной скорости поворота. Этот параметр важен, поскольку он отражает реальную ситуацию в мире, а именно, движение нашей планеты в потоке эфира. Тем не менее, мне представляется более корректным вводить понятие о скорости хода времени, как темпа процесса существования материи, опираясь на такое свойство пространства, как плотность энергии в пространстве. Увеличение или уменьшение плотности эфира, и его другие физические характеристики, в частности, температура и давление, создают новые условия существования вихревых процессов, формирующих частицы материи.
Кроме того, предполагается, что скорость хода времени в каком-то конкретном процессе существования частиц материи, может иметь только дискретные значения, и материя может существовать только на определенных уровнях энергетики. Именно это изучает квантовая физика, рассматривая уровни энергии атома, орбиты электронов и т. п. Переход частиц вещества с одного уровня существования на другой уровень происходит мгновенно, скачком, и сопровождается излучением или поглощением кванта энергии среды. Предполагается, что и в макромире, переходы между разными уровнями существования материальных объектов, для которых изменены условия существования, имют аналогичную дискретную (квантовую) природу.
Перейдем к анализу работ А.И. Вейник, ученого, который ввел понятие о хрональных свойствах вещества.Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
СТРУКТУРА ТАЛАНТЛИВОГО МЫШЛЕНИЯ
СТРУКТУРА ТАЛАНТЛИВОГО МЫШЛЕНИЯ Сильное воображение позволяет эффективнее применять оператор РВС. Но и применение его, в свою очередь, развивает воображение. Я уже не раз подчеркивал, что АРИЗ не просто организует мышление, он организует талантливое мышление. Что же это
Арифметика световых волн
Арифметика световых волн Всякое вещество, находящееся в раскаленном состоянии, излучает в окружающее пространство энергию. Распространение энергии происходит волнообразно со скоростью 299 800 километров в секунду. Эти волнообразные колебания создают в человеческом
Метр — в длинах световых волн
Метр — в длинах световых волн Еще в первой половине XIX столетия ученые предлагали использовать длину световой волны какого-либо определенного цвета в качестве эталона линейных мер. Но требования, предъявляемые к точности, не вызывали тогда еще необходимости в таком
2. Кристаллизация и структура металлов и сплавов
2. Кристаллизация и структура металлов и сплавов Порядок расположения атомов – тип кристаллической решетки – природное свойство металла, форма кристаллов и их размеры зависят от процесса перехода металла из жидкого состояния в твердое. Процесс образования кристаллов
1.2. Структура законодательства РФ об охране труда. Виды ответственности
1.2. Структура законодательства РФ об охране труда. Виды ответственности Структура законодательства РФ об охране труда Законодательство Российской Федерации в области охраны труда весьма обширно; в него входят: Конституция РФ;Федеральный закон «Об основах охраны труда
1.3. Структура отдела главного энергетика
1.3. Структура отдела главного энергетика 1.3.1. Единое централизованное управление ТО и ремонтом всех основных фондов на предприятии осуществляет главный инженер – заместитель руководителя предприятия.1.3.2. В отношении энергохозяйства он отвечает за выполнение ОГЭ
3.1. Структура вещества в твердом состоянии
3.1. Структура вещества в твердом состоянии В твердом состоянии большинство неорганических материалов (более 96 %) имеют кристаллическое строение, т. е. правильное, упорядоченное, периодическое расположение атомов, ионов или молекул в пространстве.Характер расположения
2.2. Структура охранно-пожарной сигнализации
2.2. Структура охранно-пожарной сигнализации В общем виде система охранно-пожарной сигнализации включает в себя:датчики– тревожные извещатели, реагирующие на тревожное событие (пожар, попытка проникновения на объект и т. д.), характеристики датчиков определяют основные
Глава 15 Внутренняя структура электрического потенциального поля
Глава 15 Внутренняя структура электрического потенциального поля Эфир, как и любая физическая среда, существование которой мы можем принять, вместе с Менделеевым, имеет определенные физические свойства. Менделеев писал об упругости данной среды в статье «Попытка
ГЛАВА 1 СТРУКТУРА И СИСТЕМА ОРГАНИЗАЦИИ ЭЛЕКТРОХОЗЯЙСТВА
ГЛАВА 1 СТРУКТУРА И СИСТЕМА ОРГАНИЗАЦИИ ЭЛЕКТРОХОЗЯЙСТВА Электрохозяйство предприятия – это сложный комплекс, представляющий собой единую совокупность внешних (магистральных) и внутренних (распределительных) электросетей с трансформаторами, коммутационной
Беседа семнадцатая ЛОВУШКА ДЛЯ ВОЛН
Беседа семнадцатая ЛОВУШКА ДЛЯ ВОЛН Проблема приемной антенны, которой в радиовещании часто не придают особого значения, в телевидении играет существенную роль. Собрать в пространстве максимум энергии высокой частоты во всей полосе пропускания так, чтобы помехи и
43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов
43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую