Глава 30 Гравитоплан Гребенникова
Глава 30 Гравитоплан Гребенникова
Перейдем к рассмотрению удивительной истории Виктора Степановича Гребенникова, энтомолога из Новосибирска, который смог построить «гравитоплан», работающий на эффекте полостных структур. Многие полагают, что данную историю нельзя воспринимать всерьез… Другие же, отбрасывая сомнения, изучают все тонкости этой технологии, конструкции «гравитоплана», его аналоги, и проводят эксперименты.
Виктор Степанович описал свое открытие в книге «Мой мир» [73]. Цитата здесь дается в орфографии автора: «Летом 1988 года, разглядывая в микроскоп хитиновые покровы насекомых, перистые их усики, тончайшие по структуре чешуйки бабочкиных крыльев, ажурные с радужным переливом крылья златоглазок и прочие Патенты Природы, я заинтересовался необыкновенно ритмичной микроструктурой одной из довольно крупных насекомьих деталей. Это была чрезвычайно упорядоченная, будто выштампованная на каком-то сложном автомате по специальным чертежам и расчётам, композиция. На мой взгляд, эта ни с чем не сравнимая ячеистость явно не требовалась ни для прочности этой детали, ни для её украшения.
Ничего такого, даже отдаленно напоминающего этот непривычный удивительный микроузор, я не наблюдал ни у других насекомых, ни в остальной природе, ни в технике или искусстве; оттого, что он объемно многомерен, повторить его на плоском рисунке или фото мне до сих пор не удалось. Зачем насекомому такое? Тем более структура эта «низ надкрылий» почти всегда у него спрятана от других глаз, кроме как в полете, когда ее никто и не разглядит. Я заподозрил: никак это волновой маяк, обладающий «моим» эффектом многополостных структур? Положил на микроскопный столик эту небольшую вогнутую хитиновую пластинку, чтобы еще раз рассмотреть ее странно-звездчатые ячейки при сильном увеличении. Полюбовался очередным шедевром Природы ювелира, и почти безо всякой цели положил было на нее пинцетом другую точно такую же пластинку с этими необыкновенными ячейками на одной из ее сторон. Но, не тут-то было: деталька вырвалась из пинцета, повисела пару секунд в воздухе над той, что на столике микроскопа, немного повернулась по часовой стрелке, съехала (по воздуху!) вправо, повернулась против часовой стрелки, качнулась, и лишь тогда быстро и резко упала на стол. Что я пережил в тот миг, читатель может лишь представить…
Придя в себя, я связал несколько панелей проволочкой; это давалось не без труда, и то лишь когда я взял их вертикально. Получился такой многослойный «хитиноблок». Положил его на стол. На него не мог упасть даже такой сравнительно тяжелый предмет, как большая канцелярская кнопка: что-то как бы отбивало ее вверх, а затем в сторону. Я прикрепил кнопку сверху к «блоку» и тут начались столь несообразные, невероятные вещи (в частности, на какие-то мгновения кнопка начисто исчезла из вида, что я понял: никакой это не маяк, а совсем, совсем Другое.
И опять у меня захватило дух, и опять от волнения все предметы вокруг меня поплыли как в тумане; но я, хоть с трудом, все-таки взял себя в руки, и часа через два смог продолжить работу… Вот с этого случая, собственно, все и началось» [73].
Позвольте в этом месте сделать некоторые комментарии. Эффекты отталкивания, которые описывает Гребенников, для постоянных магнитов не выглядели бы удивительными. Как мы себе представляем, два магнита отталкиваются одинаковыми полюсами, поскольку эфирные потоки каждого из них уплотняют эфирную среду в области пространства между ними. Проявления данных эффектов для пары источников волн материи де Бройля, какими, видимо и являются хитиновые пластинки, имеющие пористый упорядоченный микроузор, хорошо согласуются с теорией эффекта полостных структур. В такой ситуации, две пучности стоячих волн, то есть области сжатого уплотненного эфира, взаимодействуя друг с другом, отталкиваются.
Для нас более интересно описание Гребенниковым «эффекта пропадания кнопки», которая была привязана к «хитиноблоку». Очевидно, что сжимание двух, или более, взаимно отталкивающихся источников стоячих волн материи приводит к выталкиванию эфира наружу, где создается область повышенной плотности эфира. Соответственно, любой объект, помещенный в данную область, ведет себя «странно», пропадая из видимости.
Невидимость, в такой ситуации, означает отклонение лучей света, попадающих на область пространства повышенной или пониженной плотности эфирной среды. Такое изменение оптических свойств пространства аналогично изменению плотности любого оптически прозрачного вещества. В оптике, при такой ситуации, говорят, что изменяется коэффициент преломления. В квантовом пространстве – времени, это означает изменение свойств кванта, плотности энергии и его размеров.
В 1991 году Гребенников создал свой гравитоплан, и стал совершать полеты на «бесшумном летательном аппарате». Но фото рис. 133, показан автор на своем аппарате, напоминающем мольберт. Аппарат, как пишет изобретатель, оказался безынерционным и невидимым. На рис. 134 показаны предполагаемые эффекты «огибания светом области пространства», которая создается аппаратом Гребенникова. Люди, наблюдавшие его с земли, видели «светлый шар», «диск» или «облачко с резко очерченными краями». Здесь уместно напомнить читателю теорию квантованного пространства и принцип компенсации деформаций эфирной среды.
Рис. 133. Гребенников на своем «гравитоплане»
Рис. 134. Причины эффекта невидимости гравитоплана
Здесь уместно отметить, что вопросы невидимости объектов всерьез рассматриваются техническими специалистами различных организаций.
Невидимость означает, что луч света обходит по кривой некоторую область пространства, но затем вновь возвращается на свою прямую линию. Причины такого поведения фотонов мы рассмотрим позже, в главе о квантованности пространства и времени.
Управление аппаратом Гребенникова происходило простым механическим смещением «вееров» – элементов в нижней части аппарата, показанных на рис. 135.
Рис. 135. Система управления аппаратом Гребенникова, вид на угол платформы снизу
Смещение «вееров» относительно друг друга, как описывает автор, производилось с помощью механической рукоятки с тягами, изменяло величину движущей силы в том, или ином направлении.
Подробное описание конструкции гравитоплана, Гребенникову не разрешили сделать цензоры, и его книга вышла в «сильно сокращенном виде». Мне запомнилась одна фраза автора, которая может оказаться важной для конструирования: «…мой аппарат сделан почти целиком из бумаги». В апреле 2001 года, Виктор Степанович Гребенников скончался от обширного инсульта.
Многие полагают, что ухудшение здоровья было вызвано его «полетами» на гравитоплане и экспериментами с полостными структурами. В настоящее время, много энтузиастов пытается повторить данную технологию, чтобы создать собственный «гравитоплан». Полагаю, что летать на таком «движителе» преждевременно, до тех пор, пока эффект не будет изучен достаточно подробно. Необходимо определить границы области пространства, в которой живой организм может находиться без опасности нарушения жизнедеятельности. Возможно, что силовые установки следует размещать отдельно, расположив их треугольником в плоскости, или по окружности, вокруг центрального «жилого отсека».
Эффект полостных структур, иногда, заново открывают различные авторы. Например, Богданов из Башкирии [79], увлеченный идеей омоложения, увидел во сне, и создал макет устройства, которое позволяет изменять свойства вещества, помещенного в него, рис. 136.
Рис. 136. Капсула омоложения Богданова (в разрезе)
Устройство состоит из сферического комплекса конусных излучателей, расположенных вокруг центральной сферы. Фактически, это конусные полостные структуры, ориентированные таким образом, что в центральной части создается эффект фокусировки. Макет был изготовлен Богдановым из картона, склеен эпоксидным клеем. Диаметр макета составляет около 50 см.
Реальное устройство, по мнению Богданова, должно иметь диаметр внешней сферы 30 метров и диаметр внутренней (пустой) сферы 8 метров, внутри которой может находиться человек. Проверка «эффекта формы» конструкции Богданова, на одном из московских оборонных предприятий, показала, что внутри макета, в центральной части, наблюдается структурирование раствора марганцовки (кристаллы соединяются в шарик). С точки зрения теории Козырева, это означает уменьшение величины энтропии в центральной части устройства, в результате изменения «плотности времени».
С другой стороны, очевидно, что данная конструкция относится к области резонаторов эфирных волн (волн материи де Бройля), и позволяет намного усилить эффект полостных структур за счет фокусировки – суперпозиции стоячих волн в центральной части устройства. Очевидно, что сложение пучностей волн в центре многократно усиливает эффект изменения плотности эфира.
Могу добавить к идее Богданова следующее: количество элементов такой конструкции может быть любым, но в природе есть определенные правила строения объектов. Минимальный правильный объемный объект – тетраэдр. Структура, имеющая максимум равноправных вершин называется икосаэдр, строится из 20 одинаковых треугольников, имеет 30 ребер и 12 вершин. Полагаю, что симметрия имеет значение, по этой причине, расположение элементов «сферы Богданова, и их количество может быть важным.
Рассмотрим отдельно способы фокусировки потоков эфира, что может оказаться важным для конструирования эфирообменных аппаратов.