5. СКРЫТИЕ ДАННЫХ В НЕПОДВИЖНЫХ ИЗОБРАЖЕНИЯХ

We use cookies. Read the Privacy and Cookie Policy

5. СКРЫТИЕ ДАННЫХ В НЕПОДВИЖНЫХ ИЗОБРАЖЕНИЯХ

Большинство исследований посвящено использованию в качестве стегоконтейнеров изображений. Это обусловлено следующими причинами:

— существованием практически значимой задачей защиты фотографий, картин, видео от незаконного тиражирования и распространения;

— относительно большим объемом цифрового представления изображений, что позволяет внедрять ЦВЗ большого объема либо повышать робастность внедрения;

— заранее известным размером контейнера, отсутствием ограничений, накладываемых требованиями реального времени;

— наличием в большинстве реальных изображений текстурных областей, имеющих шумовую структуру и хорошо подходящих для встраивания информации;

— слабой чувствительностью человеческого глаза к незначительным изменениям цветов изображения, его яркости, контрастности, содержанию в нем шума, искажениям вблизи контуров;

— хорошо разработанными в последнее время методами цифровой обработки изображений.

Надо отметить, что последняя причина вызывает и значительные трудности в обеспечении робастности ЦВЗ: чем более совершенными становятся методы сжатия, тем меньше остается возможностей для встраивания посторонней информации. Развитие теории и практики алгоритмов сжатия изображений привело к изменению представлений о технике внедрения ЦВЗ. Если первоначально предлагалось вкладывать информацию в незначащие биты для уменьшения визуальной заметности, то современный подход заключается во встраивании ЦВЗ в наиболее существенные области изображений, разрушение которых приведет к полной деградации самого изображения. Не случайно поэтому стегоалгоритмы учитывают свойства системы человеческого зрения (СЧЗ), аналогично алгоритмам сжатия изображений. В стегоалгоритмах зачастую используются те же преобразования, что и в современных алгоритмах сжатия (дискретное косинусное преобразование в JPEG, вейвлет-преобразование в JPEG2000). При этом существуют, очевидно, три возможности. Вложение информации может производиться в исходное изображение, либо одновременно с осуществлением сжатия изображения-контейнера, либо в уже сжатое алгоритмом JPEG изображение. Поэтому в пункте 5.1 рассмотрены свойства человеческого зрения и их учет в алгоритмах сжатия изображений.

Выполнение линейных ортогональных преобразований изображений — вычислительно трудоемкий процесс, несмотря на наличие быстрых алгоритмов. Поэтому, в некоторых случаях можно ограничиться встраиванием информации в пространственной области изображения. Этот исторически первым появившийся метод рассмотрен в пункте 5.2 на примере нескольких интересных алгоритмов. Более эффективные стегоалгоритмы, реализующие внедрение ЦВЗ в области преобразования, рассмотрены в пункте 5.3.

Данный текст является ознакомительным фрагментом.