Беседа восьмая ЗУБЬЯ ПИЛЫ В ДЕЙСТВИИ

We use cookies. Read the Privacy and Cookie Policy

Беседа восьмая

ЗУБЬЯ ПИЛЫ В ДЕЙСТВИИ

Рассмотрев основные типы разверток, приятели займутся изучением способов подачи вырабатываемых развертками колебаний на отклоняющие электроды или отклоняющие катушки. Они увидят, что в случае электростатического отклонения приходится подавать симметричные сигналы на каждую пару отклоняющих пластин. Что же касается электромагнитного отклонения, то скорость изменения токов, проходящих через обмотки, вызывает некоторые затруднения. Но все приходит к благополучному концу в этой беседе, в которой, в частности, рассматриваются: усиление пилообразных напряжений; получение симметричных напряжений; изменение полярности с помощью лампы; величина отклоняющего магнитного поля; индуктивность отклоняющих катушек; нарастание и уменьшение тока; величина перенапряжений; катушки с малым индуктивным сопротивлением; согласующий трансформатор; меры предосторожности в отношении изоляции; кадровая развертка; паразитные колебания; демпфирующий диод.

УСИЛИТЕЛЬ, ОБЛАДАЮЩИЙ ВСЕМИ ДОБРОДЕТЕЛЯМИ

Незнайкин. — В последний раз, Любознайкин, когда мы с тобой расставались, ты обещал поговорить о более занимательных вещах, чем эти развертки, которые преследуют меня во сне. Я не знаю, что ты имеешь в виду. Но пока я себе не могу ясно представить, как подать пилообразные напряжения на электроды в трубках с электростатическим отклонением или же на катушки в трубках с электромагнитным отклонением.

Любознайкин. — Ты прав, Незнайкин. Располагать этими напряжениями — хорошо, но уметь ими пользоваться — еще лучше. Их амплитуда обычно недостаточно велика, чтобы заставить пятно перемещаться по всему светящемуся экрану. Поэтому-то их нужно усиливать.

Н. — Вот это уж несложно, раз речь идет о напряжениях сравнительно низкой частоты.

Л. — Ты слишком скор на решения! Основная частота разверток не слишком высока. Но ввиду того что их колебания далеки от синусоиды, они очень богаты гармониками… А ты еще помнишь, что значит «гармоника»?

Н. — Конечно. Это составляющие колебания, частоты которых кратны основной частоте.

Л. — Твоя память по-прежнему тебе не изменяет. Пилообразные колебания, богатые гармониками, требуют применения усилителей, способных пропустить очень широкую полосу частот, иначе мы можем ослабить или совсем исключить гармоники высшего порядка, деформируя таким путем зубья пилы.

Н. — Если я правильно понял, усилитель, который срежет все гармоники, оставив только основную частоту, по всей вероятности, преобразует пилу в синусоиду?

Л. — Именно так. Но ты берешь крайний случай. Чаще всего, ослабляя верхние гармоники, усилитель слегка закругляет зубья.

Н. — Получается изношенная пила!

Л. — С другой стороны, я тебе напоминаю, часто применяют усилитель, умышленно искажающий форму зубьев пилы так, чтобы превратить отрезки экспоненциальных кривых в прямые линии.

Н. — Я вижу, что поспешил, утверждая, что усилитель развертки — очень простое устройство.

Л. — Он действительно прост. Но задачи, которые он выполняет, многообразны. Он должен усиливать, в том числе и верхние гармоники, выпрямлять искривленные зубья. И это еще не все! Ведь в случае электромагнитного отклонения он должен еще и отдавать мощность…

Н. — …как самый обычный выходной каскад радиоприемника, питающего громкоговоритель. К счастью, в случае электростатического отклонения задача гораздо проще; усилитель должен всего-навсего давать напряжение без тока, а следовательно, практически и мощности.

ВКРИВЬ И ВКОСЬ

Л. — Да, речь идет об усилителе напряжения. Но и в этом случае задача не становится проще, так как нужно подавать на отклоняющие электроды, образующие пару, напряжения противоположных полярностей; в то время, как потенциал одного электрода увеличивается (рис. 55), потенциал второго должен уменьшаться, затем оба одновременно должны резко вернуться к своим начальным значениям и все должно начинаться сначала.

Рис. 55. Форма напряжений на отклоняющих электродах при двухтактном питании.

Н. — В общем, в то время как правый электрод толкает пятно вкривь, левый тянет его вкось и, таким образом, их напряжения дружески сотрудничают… Но в таком случае, чтобы получить эти напряжения, вероятно, нужно использовать для каждой пары электродов сочетание двух синхронизированных разверток, дающих идентичные напряжения, но противоположных полярностей? Какое усложнение!

Л. — Успокойся, Незнайкин, одной развертки вполне достаточно, чтобы получить оба напряжения противоположных полярностей. Задача эта не новая. Вспомни-ка, мы ее уже решили, рассматривая двухтактные усилители. Там ведь тоже речь шла о подаче на сетки обеих ламп двухтактного каскада одинаковых напряжений, но противоположных полярностей.

Н. — В самом деле. И мы нашли простое решение в виде междулампового трансформатора, вторичная обмотка которого имеет отвод от средней точки.

Л. — Это годится для трубки с электростатическим отклонением. Первичная обмотка трансформатора (рис. 56) включается в анодную цепь лампы, усиливающей напряжения. Оба конца вторичной обмотки, на которых возникают напряжения противоположных полярностей, присоединяются к двум пластинам той же отклоняющей пары. Отвод же от средней точки нужно соединить с последним анодом таким образом, чтобы не создавать разности потенциалов между ним и отклоняющими пластинами.

Рис. 56. Редко применяемая схема трансформаторной связи между усилительной лампой и отклоняющими пластинами. Второй анод (А2) соединен с источником высокого напряжения.

Н. — Можно ли для трубок использовать схему изменения полярности при помощи лампы?

Л. — Само собой разумеется. Вот обычная схема (рис. 57), где первая лампа является усилителем, тогда как вторая служит только для изменения полярности напряжения[6].

Рис. 57. Схема двухтактного питания отклоняющих пластин. Лампа Л1 служит для усиления, а лампа Л2 — для изменения полярности напряжения.

На одну из отклоняющих пластин мы подаем усиленное напряжение непосредственно с анода первой лампы. Напряжение противоположной полярности с выхода второй лампы подается на другую отклоняющую пластину. Чтобы напряжение на выходе второй лампы не оказалось выше напряжения на выходе первой, входное напряжение второй лампы уменьшается с помощью потенциометра. Через конденсаторы С1 и С2 на отклоняющие пластины поступают одни только переменные составляющие пилообразных напряжений. Средний же потенциал этих электродов равен потенциалу последнего анода трубки, поскольку обе пластины присоединены к нему через резисторы R1 и R2.

НЕЗНАЙКИНУ ВСЕ КАЖЕТСЯ ЛЕГКИМ

Н. — Все это мне кажется не очень страшным. Когда хорошо знаком с радио, телевидение не готовит особых сюрпризов.

Л. — Это мы еще увидим, рассматривая схемы электромагнитного отклонения. В этом случае усилительная лампа должна отдавать некоторое количество энергии. Созданное магнитное поле зависит как от количества витков, так и от величины тока, который через них проходит.

Н. — Знаю, Любознайкин. И я был очень доволен, когда узнал, что на практике интенсивность магнитного потока выражается произведением величины тока на число витков. Я уж лучше буду говорить об ампер-витках (ав), чем об единицах измерения, которые называются гаусс, эрстед и которые мне ничего не говорят.

Л. — Ты поэтому знаешь, что катушка из 1 000 витков, через которую проходит ток 0,12 а…

Н. — …создает поле 0,12·1 000 = 120 ав.

Л. — Такое же поле можно, впрочем, получить при катушке из 200 витков…

Н. — …и при токе 0,6 а. Но соответствуют ли эти цифры чему-нибудь в области телевидения?

Л. — Да, это порядок величины поля, необходимого для получения развертки в трубке с углом отклонения луча порядка 70°.

Н. — Если я правильно понимаю, необходимо изменение магнитного поля от 0 до 120 ав, для того чтобы пятно переместилось вдоль всего диаметра экрана.

Л. — Чтобы заставить пятно пройти желаемый путь, ток, протекающий через катушку из 1000 витков, должен равномерно увеличиваться до 0,12 а, затем очень быстро упасть до нуля и т. д.

Н. — Это не должно быть очень трудным. Нужно только взять достаточно мощную лампу. Тогда включают отклоняющие катушки в ее анодную цепь…

Л. — …и постоянная составляющая анодного тока создаст такое постоянное поле, что пятно отклонится за пределы экрана…

Н. — Это пустяки. Можно, например, обеспечить связь между лампой и двумя отклоняющими катушками Б при помощи катушки индуктивности А и конденсатора С, который не пропустит постоянной составляющей через катушки (рис. 58).

Рис. 58. Схема усилителя с индуктивной нагрузкой для питания катушек магнитного отклонения L. Используется преимущественно для вертикального отклонения.

Л. — Прекрасно, Незнайкин. А что ты будешь делать с током самоиндукции в катушке?

Н. — Я что-то не очень ясно представляю себе, что ему тут делать.

РАССУЖДЕНИЯ ОБ ИНДУКТИВНОСТИ

Л. — Катушки, состоящие в среднем из 1 000 витков, обладают индуктивностью, которую можно исчислять приблизительно в 0,15 гн. Быстрые изменения тока вызовут в них токи самоиндукции.

Н. — Да, правда, я припоминаю нашу старую формулу: «индуктивность вызывает противодействие». Когда ток в обмотке изменяется, взаимоиндукция порождает наведенный ток, который противодействует изменениям индуктирующего тока. Когда последний увеличивается, наведенный ток идет в противоположном направлении. Но когда индуктирующий ток уменьшается, наведенный ток делает все от него зависящее, чтобы его поддержать, и для этого идет в том же направлении.

Л. — Твоя превосходная память чрезвычайно облегчает мне задачу. Добавлю, что индуктированный ток возбуждает напряжение на зажимах обмотки. Ты легко догадаешься, от чего зависит величина этого напряжения.

Н. — Я полагаю, что она пропорциональна индуктивности L обмотки.

Л. — И ты не ошибаешься. Но она зависит также от другого: от скорости изменения тока или, что, собственно говоря, одно и то же, от времени dt, в течение которого ток изменился на величину dI.

Н. — Ясно. Если ток изменяется очень медленно, это все равно, как если бы он был постоянным, но зато чем быстрее изменения, тем сильнее сказывается индуктивность. Ты как-то совершенно правильно сравнил индуктивность с инерцией. Если лошадь, запряженная в тяжелую повозку, движется вперед и назад очень медленно, все будет в порядке. Но если лошадке вздумается поразвлечься и совершить свою прогулку ускоренным шагом, то в тот момент, когда она быстро дернет вперед повозку, та ее потянет назад. А когда лошадь попытается сдержать повозку, влекомую движением, повозка толкнет лошадь вперед. И толчок может оказаться очень сильным. В конце концов или лошадь погибнет, или же повозка окажется разбитой.

В ДЕБРЯХ АРИФМЕТИКИ

Л. — Если ты ничего не имеешь против, вернемся к нашим обмоткам. Полагая, что зубья пилы тока, который через них проходит, будут совершенно линейными, можно сказать, что напряжение, возникающее благодаря индуктивности, тем больше, чем меньше продолжительность времени t изменения тока I.

Н. — Я бы не сказал, что очень люблю формулы. Но думаю, что. обозначив через и напряжение, вызываемое индуктивностью на зажимах обмотки, я могу сказать, что

Л. — Браво, Незнайкин. Твоя формула совершенно правильна. Значит, ты можешь высчитать напряжение для индуктивности L = 0,15 гн и тока I = 0,12 а.

Н. — Но чему равно время t? Мне кажется, что все же надо различать два случая: случай сравнительно длительного возрастания тока и случай его быстрого уменьшения (рис. 59).

Рис. 59. Период отклоняющего тока, состоящий из времени t1 прямого хода и значительно более короткого интервала времени t2 обратного хода.

Л. — Это верно. Возьмем же случай отклонения по строкам. Для 25 кадров в секунду и 625 строк мы имеем 15 625 зубьев пилы в секунду. Это значит, что каждая строка длится только 0,000064 сек, или 64 мкcек, причем время прямого хода пятна (возрастание тока) равно 53 мкcек, а время обратного хода — 11 мкcек. Вот у тебя все цифровые данные. Постарайся не ошибиться.

Н. — Напряжение, возникающее во время прямого хода,

а напряжение, возникающее во время обратного хода,

Но ведь это потрясающе!

Л. — Самое потрясающее не перенапряжение, а то, что ты но ошибся в расчетах.

Н. — Я думаю, что ты прав, называя это «перенапряжением». Никогда бы не поверил, что сравнительно небольшие, хотя и быстрые изменения токов могут вызвать напряжения такого порядка.

Л. — Это еще ничего. Ведь для трубок большего диаметра нужно использовать значительно большие токи. И тогда перенапряжения достигают нескольких тысяч вольт. Даже в нашем случае они в действительности гораздо больше, так как действительной форме зубьев пилы соответствуют гораздо более быстрые изменения тока, чем в принятом нами предположении линейности обратного хода.

Н. — А разве это не опасно?

Л. — Перенапряжения, возникающие из-за резких изменений тока в индуктивных цепях, представляют одну из самых больших опасностей в электротехнике! Много катастроф происходит в результате этого явления. В нашем случае отклоняющие обмотки находятся но меньшей мере в сложном положении. Их весьма ограниченные габариты пе позволяют использовать для намотки провода с достаточно толстой изоляцией. Приходится довольствоваться сравнительно слабой изоляцией, которая может не выдержать перенапряжения и, в случае пробоя, вызвать прекрасный фейерверк.

У НЕЗНАЙКИНА ПРЕКРАСНАЯ ИДЕЯ

Н. — Вот какая печальная перспектива! Нельзя ли помочь делу, уменьшал количество витков обмотки, c тем чтобы повысить настолько же величину тока с целью сохранения числа ампер-витков?

Л. — Конечно, ото можно было бы сделать. Но какое это даст преимущество?

Н. — Если уменьшить, например, в 5 раз количество витков, то индуктивность уменьшится в 25 раз. Таким образом, несмотря на то, что ток нужно увеличить в 5 раз, перенапряжение уменьшится в конце концов тоже в 5 раз.

Л. — Прекрасно придумано, Незнайкин. Решительно, сегодня ты в чудесной форме!

Н. — Однако я предвижу и трудности. Уменьшив в 5 раз количество витков, мы должны увеличить в том же соотношении величину тока. И это даст нам 0,12 5 = 0,6 а. Придется прибегнуть бог знает к какой лампе, чтобы получить подобный ток в анодной цепи.

Л. — Для этого существует более простой способ. Так как у нас теперь в 5 раз меньше витков и индуктивность упала в 25 раз, мы получим в 5 раз больший ток, подавая на обмотки напряжение, тоже в 5 раз меньшее.

Н. — Подожди, Любознайкин, у меня начинается путаница в голове.

Л. — Подумай сам, Незнайкин. Индуктивное сопротивление обмотки уменьшается в 25 раз. Следовательно, при том же напряжении на ее зажимах ток будет в 25 раз больше. Это слишком много. Уменьши напряжение в 5 раз и получишь желаемый ток.

Н. — Теперь я понял. Но как же снизить напряжение?

Л. — Разве ты никогда не слышал о том, что называют трансформатором?

Н. — Прости, но я не подумал об этом старом знакомом. Очевидно, понижающий трансформатор даст идеальное решение (рис. 60). Таким образом, на вторичной обмотке получится напряжение во столько раз меньшее, во сколько раз увеличится ток.

Рис. 60. Схема трансформаторной связи между лампой усилителя и отклоняющими катушками Б.

Л. — Связь через трансформатор используется для отклонения как по строкам, так и по кадрам. Правда, в кадровой развертке применяется в качестве нагрузки также и индуктивность. Иногда даже заменяют катушку индуктивности А (рис. 58) простым сопротивлением.

ДРУГИЕ НЕПРИЯТНЫЕ СЛЕДСТВИЯ ПЕРЕНАПРЯЖЕНИЯ

Н. — А разве при вертикальном отклонении не приходится опасаться перенапряжений?

Л. — В значительно меньшей степени по двум соображениям. С одной стороны, необходимое изменение магнитного поля несколько меньше, чем для строчного отклонения, так как размер изображения в ширину больше, чем в высоту. Таким образом, путь, проходимый пятном в вертикальном направлении, короче его горизонтального перемещения.

Н. — Ну, разница тут невелика.

Л. — Да, конечно. Таким образом, с другой стороны, главной причиной гораздо меньших перенапряжений является значительно меньшая скорость изменения тока. В то время как на горизонтальной развертке должно быть 625 зубьев пилы, на развертке кадров их будет только 2. Это показывает, что вертикальное отклонение не требует особых предосторожностей. Но перенапряжения в процессе горизонтального отклонения усложняют вес, включая и работу усилителя.

Н. — Я не вижу, в чем тут дело.

Л. — Разве тебе не ясно, что перенапряжения суммируются с анодным напряжением. И ото независимо от схемы выхода. В случае связи через индуктивность (рис. 58) перенапряжения проходят через конденсатор С. В случае же трансформаторной схемы (рис. 60) они образуются на первичной его обмотке. Ясен теперь тебе смысл этого?

Н. — В то время как ток возрастает, т. е. во время прямого хода пятна, ток самоиндукции идет в направлении, обратном направлению анодного тока, и препятствует его увеличению. Следовательно, приток электронов на анод настолько же уменьшает его положительное напряжение. В нашем примере перенапряжение было равно 340 в. Таким образом, чтобы на аноде оставалось соответствующее напряжение, скажем 100 в, нужно, чтобы напряжение питания было по крайней мере 440 в.

Л. — Все эти рассуждения вполне правильны. Рассмотрим теперь процессы во время обратного хода пятна.

Н. — При этом получается резкое уменьшение анодного тока. Чтобы воспрепятствовать этому, самоиндукция вызывает значительный ток в том же направлении, который уносит электроны с анода, делая его таким путем более положительным. Перенапряжение, появляющееся при обратном ходе, добавляется к анодному напряжению. В нашем случае 1 640 в перенапряжения вместо 440 в питания дадут на аноде 2 080 в.

Л. — В связи с этим используются предпочтительно лампы, имеющие вывод анода на самой колбе.

Н. — Я спрашиваю себя, как работает усилитель при столь значительных изменениях анодного напряжения.

Л. — Практически искажения, являющиеся их следствием, не очень значительны, если используются лампы, анодный ток которых мало зависит от анодного напряжения.

Н. — То есть лампы с высоким внутренним сопротивлением, так как оно по определению является отношением изменения анодного напряжения к соответствующему изменению анодного тока.

Л. — Можешь ты мне сказать, какие лампы имеют большое внутреннее сопротивление?

Н. — Да пентоды же, дружище! В заключение, если только я правильно понял, для отклонения по строкам применяют пентодный усилитель, присоединенный к отклоняющим катушкам через понижающий трансформатор; все должно быть хорошо изолировано за-за этих несносных перенапряжений.

Л. — Не говори о них слишком плохо. Ты дальше увидишь, что и их удается использовать весьма остроумным способом.

Н. — Как, и порок можно превратить в добродетель!..

Л. — Так как перенапряжения, о которых идет речь, гораздо менее опасны при отклонении по кадрам, в этом случае вполне достаточно простого триода с индуктивным или активным нагрузочным сопротивлением.

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

Н. — Меня удивляет, как в цепи с такой индуктивностью ток может изменяться так быстро, как это необходимо в случае обратного хода по строкам.

Л. — Это вполне естественный вопрос. Ты ведь знаешь, что приходится расплачиваться за это резкое изменение значительным перенапряжением, являющимся его результатом. И мы создаем возможность для быстрого изменения тока, так составляя контур, чтобы он имел очень малое затухание. В действительности это настоящий колебательный контур с собственной индуктивностью, емкостью и сопротивлением.

Н. — Однако я не вижу ни конденсатора, ни сопротивления.

Л. — Да разве можно, в самом деле, представить себе обмотку, лишенную сопротивления и распределенной емкости?

Н. — Прошу прощения, я признаю, что как отклоняющие обмотки, так и обмотки трансформатора имеют и сопротивление и распределенную емкость.

Л. — Если сопротивление не слишком велико, получается настоящий колебательный контур. Быстрый переход электронов при обратном движении пятна чрезвычайно облегчается, так как он будет происходить как часть колебаний контура.

Н. — Вот это хорошо! А колебание сейчас же прекратится?

Л. — Увы, нет! В этом-то и заключается обратная сторона медали. Когда привели в движение электроны в колебательном контуре, они останавливаются только после нескольких колебаний, все более и более слабых, как маятник после толчка (рис 61).

Рис. 61. Паразитные колебания, приводящие к искажению отклоняющего тока.

Н. — Но что из этого практически вытекает?

Л. — Ничего хорошего. Зуб пилы обогатится маленькой затухающей паразитной синусоидой, которая по окончании обратного хода будет мешать началу прямого хода. Вместо того чтобы начать движение от левого края изображения с постоянной скоростью, пятно начнет нечто вроде вальса (три шага направо, два — налево, полтора шага направо, один — налево и т. д.), после чего только продолжит равномерное движение вправо. Эти небольшие перемещения туда и обратно создают на изображении очень неприятные вертикальные полосы.

Н. — И какое же лекарство существует против таких паразитных колебаний, которые, по-моему, похожи на самовозбуждение?

Л. — Как и в радио, введение затухания!

Н. — И я полагаю, что это поглощение энергии будет поручено резистору, включенному параллельно отклоняющим катушкам.

Л. — Это действительно самый простой и дешевый способ. Постепенно уменьшая сопротивление такого резистора, через него пропускают все более и более значительный ток. Таким образом, определяется величина, как раз достаточная для создания необходимого затухания контура и гашения паразитных колебании.

Н. — Жаль, что резистор поглощает энергию в течение всего периода. Было бы замечательно иметь быстродействующий переключатель, который включал бы резистор в нужный момент для гашения паразитных колебании и в то же время отключал бы его во время обратного хода пятна с целью уменьшения затухания контура и улучшения обратного хода.

Л. — Ничего нет легче этого, Незнайкин. Добавь к шунтирующему резистору диод, включенный в нужном направлении, т. е. так, чтобы он пропускал ток во время отрицательных, а не положительных полупериодов (рис. 62). При этом затухание будет увеличиваться в конце обратного и начале прямого хода, т. е. во время «опасной» фазы функционирования.

Рис. 62. Схема включения диода Д последовательно с резистором R для внесения в колебательный контур затухания в нужный момент с целью гашения паразитных колебаний.

Н. — Это действительно чрезвычайно остроумно придумано, этот демпфирующий диод. Но для чего же служит конденсатор С, присоединенный параллельно резистору, который ты включил последовательно с диодом?

Л. — Конденсатор, разряжаясь через резистор, поддерживает небольшое отрицательное смещение на аноде диода, и диод пропускает ток только тогда, когда напряжение на обмотке превышает величину этого смещения. Благодаря этой искусственной задержке контур дольше остается колебательным. Поэтому отрицательный полупериод колебания во время обратного хода увеличивается, что обеспечивает большую амплитуду развертки. Таким образом, находящаяся в нашем распоряжении энергия, используется с более высоким к. п. д.

Н. — Неужели нельзя было избежать бесполезной траты мощности в резисторе R?

Л. — Ты поторопился и предвосхитил мои объяснения. Во всех современных телевизорах напряжение на конденсаторе С используют для увеличения анодного напряжения выходной лампы (рис. 63). При этом в качестве резистора R служит сама выходная лампа. Поэтому в схеме происходит как бы регенерация мощности, так как часть мощности, бесполезно рассеивавшаяся раньше на резисторе R, используется в схеме. Амплитуда отклонения при этом значительно увеличивается, а к. п. д. выходной лампы резко повышается.

Рис. 63. Схема выходного каскада строчной развертки с регенерацией мощности. Вместо выходного трансформатора использован более дешевый автотрансформатор, обеспечивающий к тому же большой коэффициент связи.

Н. — Зато я чувствую, что к. п. д. моего мозга начинает падать, так он задемпфирован всеми понятиями, которые ему пришлось сегодня поглотить, причем не оказывая ни малейшего сопротивления.