5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ
5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ
Работы по созданию автоматизированных систем управления технологическими процессами (АСУ ТП) электроэнергетических объектов были начаты с появлением первых управляющих вычислительных машин (УВМ). Первая в нашей стране АСУ ТП была создана для Боткинской ГЭС на УВМ типа УМ-ШХ (1973–1975 гг.) по инициативе и проектным разработкам Ленгидропроекта. В дальнейшем в качестве технической базы при создании АСУ ТП ГЭС (Красноярская, Саяно-Шушенская, Чиркейская ГЭС, Загорская ГАЭС) использовались средства управляющей вычислительной техники на базе ЭВМ (М-6000, М-7000, СМ-1, СМ-2, ТВСО и др.). Наибольший вклад в становление и развитие работ по АСУ ТП ГЭС внесли М.Н. Розанов, В.А. Карпов, Н.Б. Гущина (ВЭИ), В.В. Семенов (ВНИИэлектромаш), В.И. Фельдман (Ленгидропроект), Г.Р. Носова (Гидропроект), Л.В. Росман (Энергосетьпроект).
С появлением микропроцессорной вычислительной техники (конец 70-х — начало 80-х годов) в мире и одновременно в СССР начались разработки и внедрение в энергосистемах микропроцессорных систем управления. Отечественными разработчиками (ВЭИ, ВНИИЭ, ВНИИэлектромаш) были начаты исследования по созданию локальных микропроцессорных устройств управления. Впервые в нашей стране в 1979 г. сотрудниками ВЭИ были проведены испытания опытного образца микропроцессорного автоматического регулятора возбуждения на Днепровской ГЭС. В результате исследований и полномасштабных испытаний разработаны следующие микропроцессорные устройства:
автоматические регуляторы возбуждения гидро- и турбоагрегатов (АРВ-СДМ);
системы управления мощностью турбоагрегатов (ЭЧСР-М);
устройства противоаварийного управления (ПАА);
устройства группового регулирования активной и реактивной мощности электростанции;
система сбора и отображения информации на ГЭС, ГАЭС;
системы управления и защиты передач и вставок постоянного тока.
К числу важных устройств относятся автоматические регуляторы возбуждения генераторов сильного действия, без которых невозможно обеспечить устойчивую работу ЕЭС. Первые автоматические регуляторы возбуждения сильного действия на базе магнитных усилителей были созданы для Волжской ГЭС им. В.И. Ленина (И.А. Глебов (ВНИИэлектромаш), И.М. Ботвинник (ВНИИЭ), Г.Р. Герценберг (ВЭИ), В.А. Веников (МЭИ), С.А. Совалов (ЦДУ ЕЭС)).
Существенный вклад в создание микропроцессорных систем автоматического управления внесли В.Д. Ковалев, B.C. Мельников, А.В. Фадеев (ВЭИ), В.М. Долкарт (ВНИИЭМ), В.В. Кичаев (ВНИИэлектромаш), Я.Н. Лугинский (ВНИИЭ), А.Н. Комаров (ЦДУ ЕЭС).
Накопленный опыт разработки и эксплуатации микропроцессорных систем автоматического управления позволил перейти к созданию интегрированных микропроцессорных АСУ ТП. Отечественными институтами (ВЭИ, НИИтеплоприбор, ВНИИЭМ) разработаны микропроцессорные средства для создания интегрированных АСУ ТП, соответствующие мировому уровню.
Системы автоматизации для АСУ ТП зарубежного производства (фирмы «Siemens», ABB, AEG, «Allen-Bradley», «Valmet» и др.) требуют адаптации аппаратных средств к отечественному электротехническому и энергетическому оборудованию. Кроме этого, при применении аппаратуры зарубежных фирм сохраняется зависимость от фирм-поставщиков при дальнейшем расширении или реконструкции объекта, а также при ремонте аппаратуры. Аппаратно-программные системы зарубежных фирм, как правило, в 2–3 раза дороже отечественных.
В последнее время функциональные задачи, возлагаемые на АСУ ТП, значительно расширились. АСУ ТП выполняется в виде двухуровневой распределенной системы. Верхний уровень управления включает в себя:
подсистему представления информации персоналу станции (ППИ);
подсистему группового регулирования частоты и активной мощности (ГРАМ);
подсистему общестанционного регулирования напряжения (ОСРН);
подсистему выбора состава работающих агрегатов (ПУСК);.
подсистему регистрации и анализа аварийных режимов (ПРАР);
устройство противоаварийной автоматики (ПАА);
подсистему коммерческого учета электроэнергии (КУЭ);
подсистему связи с вышестоящим уровнем управления (ПСВУ).
Нижний уровень АСУ ТП содержит:
устройства сбора и первичной обработки информации (УСИ) от агрегатов, блочных трансформаторов, преобразователей, линий и т.д.;
локальные системы регистрации (ЛСР) аварийного режима на агрегатах и подстанциях;
устройства контроля и диагностики агрегата (КДА);
подсистемы комплексного управления агрегатом (КУА);
подсистемы контроля и диагностики подстанционного оборудования (КДПО).
Интегрированные микропроцессорные АСУ ТП проектируются для Волжской, Чебоксарской ГЭС и ряда других объектов.
Подсистема представления информации строится на базе локальной вычислительной сети IBM-совместимых персональных компьютеров промышленного исполнения. В качестве технических средств остальных подсистем используются унифицированные микропроцессорные комплексы разработки ВЭИ, отвечающие требованиям энергетических объектов по электромагнитной совместимости, помехозащищенности и надежности.
Приоритет разработок в области противоаварийного управления принадлежит отечественным специалистам В.А. Веникову, С.А. Совалову, В.А. Семенову, В.Д. Ковалеву, Л.А. Кощееву, Б.И. Иофьеву, PC. Рабиновичу. Используемые в энергосистемах России комплексы противоаварийной автоматики (УПА) включают:
устройства для обеспечения устойчивости электростанций и энергосистем;
автоматику предотвращения асинхронного хода (АПАХ);
автоматическую частотную разгрузку (АЧР);
противоаварийную автоматику от опасного повышения (понижения) напряжения.
Наиболее ответственной является система противоаварийного управления, предотвращающая нарушение устойчивости электростанций и энергосистем. Соответствующие устройства формируют управляющие воздействия на отключение части генераторов, быстродействующую разгрузку паровых турбин, отключение нагрузки, форсировку (расфорсировку) мощности передач и вставок постоянного тока, деление энергосистем и т.п.
Устройства противоаварийной автоматики создавались вначале как релейные комплексы. Обеспечивающие устойчивость ограниченного энергорайона отдельные устройства были слабо координированы между собой и не отличались точностью формирования управляющих воздействий (УВ).
Когда в энергосистемах началось широкое строительство линий электропередачи напряжением 500 кВ и выше, существенно возросли требования к точности реализации УВ и надежности функционирования УПА. К этому времени отечественной промышленностью уже начали выпускаться управляющие вычислительные машины.
Созданные в некоторых энергообъединениях централизованные (в рамках энергорайона) УПА с применением мини-ЭВМ типов М-6000, ТА-100, СМ-1, СМ-2 давали возможность формировать УВ для энергосистем со сложной структурой. Однако ограниченное быстродействие мини-ЭВМ не позволяло осуществлять формирование алгоритмов с достаточной степенью точности. Централизованные системы требовали большого количества дорогостоящих телеканалов связи для передачи контролируемых режимных параметров, УВ, информации о состоянии сети и пусковых органах. Управляющие системы с мини-ЭВМ и большим объемом периферийного оборудования не отличались надежностью, а для их обслуживания были необходимы квалифицированные специалисты по вычислительной технике.
С появлением промышленных микропроцессоров и микроЭВМ появилась реальная возможность создания иерархических систем противоаварийного управления, отличающихся большей надежностью, точностью вычисления УВ и меньшей стоимостью по сравнению с централизованными УПА.
Первый двухуровневый комплекс противоаварийного управления создан для объединенной энергосистемы Поволжья, где для верхнего уровня противоаварийного управления применяется мини-ЭВМ типа СМ-1420, а на нижнем — используются микропроцессорные устройства противоаварийной автоматики, разработанные ВЭИ.
Устройства автоматики для предотвращения асинхронного хода действуют локально. Устройства АПАХ, установленные в энергосистемах страны, подразделяются на два вида: быстродействующие, срабатывающие с небольшой выдержкой времени в течение первого периода асинхронного режима, и замедленные, срабатывающие с заданной выдержкой времени или после определенного числа периодов асинхронного режима.
Автоматическая частотная разгрузка, широко распространенная в энергосистемах нашей страны и находящая в последние года все большее применение за рубежом, сравнительно проста и вместе с тем чрезвычайно эффективна, так как благодаря ей предотвращаются наиболее тяжелые аварии с полным нарушением энергоснабжения из-за так называемой «лавины» частоты. Автоматическая частотная разгрузка выполняется в виде местных устройств с использованием в качестве пусковых органов реле частоты, действующих на отключение потребителей.
Наряду с АЧР для предотвращения развития аварии при снижении частоты в энергосистеме применяется автоматический пуск и загрузка гидрогенераторов или перевод их из режима СК в генераторный режим.
Автоматика, защищающая от повышения напряжения, предотвращает повреждение электротехнического оборудования в случае опасного повышения напряжения, вызванного избытком реактивной мощности. Автоматика действует на включение нормально отключенных шунтирующих реакторов, а затем, если напряжение остается недопустимо высоким, на отключение линии электропередачи, являющейся источником избыточной реактивной мощности.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Системы управления электроустановками на электростанциях
Системы управления электроустановками на электростанциях Вопрос. Между какими иерархическими уровнями управления распределяются функции управления электроустановками на электростанциях?Ответ. Распределяются между:общестанционным уровнем;блочным уровнем
6.2.5. Автоматизированные системы управления электрохозяйством предприятий
6.2.5. Автоматизированные системы управления электрохозяйством предприятий Одним из перспективных направлений совершенствования оперативно-диспетчерского управления электрохозяйством предприятий (организаций) является внедрение автоматизированных систем
3.4. Существующие системы управления качеством
3.4. Существующие системы управления качеством 3.4.1. Система тотального управления качеством В круг мероприятий, определенных концепцией качества, наряду с требованиями потребителей поэтапно были введены требования таких групп по интересам предприятия, как инвесторы,
4.1. Понятие системы контроля и управления доступом
4.1. Понятие системы контроля и управления доступом Системы контроля и управления доступом (СКУД) разграничивают права прохода в помещения (зоны, территории) определенных категорий лиц и ограничивают доступ лиц, не обладающих такими правами. Сегодня СКУД – это не только
7.1. Система качества как часть системы управления организацией
7.1. Система качества как часть системы управления организацией Все виды деятельности, встречающиеся в работе организации, мы должны рассматривать как технологический процесс. В работе организации эти процессы взаимодействуют сложным образом, образуя систему или сеть
5.6.3. ЧЕЛОВЕКО-МАШИННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ СОВРЕМЕННЫМИ ЭЭС
5.6.3. ЧЕЛОВЕКО-МАШИННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ СОВРЕМЕННЫМИ ЭЭС Как было показано, оперативное управление ЭЭС осуществляется автоматизированной системой диспетчерского управления, и деятельность оперативно-диспетчерского персонала представляет собой совокупность
2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления
2.1. Реактивная система управления корабля Apollo. Общая характеристика системы управления Все 3 отсека корабля Apollo – командный отсек, служебный отсек и лунный корабль – имеют самостоятельные реактивные системы управления (рис. 21.1). Рис. 21.1. Корабль Apollo: 1 – лунный корабль; 2 –
ЖРД реактивной системы управления служебного отсека и лунного корабля
ЖРД реактивной системы управления служебного отсека и лунного корабля ЖРД РСУ служебного отсека и лунного корабля с тягой 45,5 кг импульсного типа, радиационного охлаждения, работающие на монометилгидразине или 50% смеси гидразина и несимметричного диметилгидразина в
ЖРД реактивной системы управления командного отсека
ЖРД реактивной системы управления командного отсека ЖРД РСУ командного отсека с тягой 42,2 кг абляционного охлаждения работают на монометилгидразине и N2O4, ква-зиустановившееся давление в камере сгорания 10,5 кг/см?. Вес ЖРД 4,08 кг (рис. 21.9). ЖРД работают главным образом в
Описание бесплатформенной аварийной системы управления
Описание бесплатформенной аварийной системы управления Аварийная система управления разработана фирмой TRW (США). Функциональная блок-схема системы представлена на рис. 25.1.Блок чувствительных элементов аварийной системы состоит из трех маятниковых акселерометров, трех
Работа бесплатформенной аварийной системы управления
Работа бесплатформенной аварийной системы управления Двумя участками, на которых работа аварийной системы управления в максимальной степени подвержена влиянию динамики полета лунного корабля, являются участки спуска и подъема (обычно разделенные отрезком времени, в
Оценка точности аварийной системы управления
Оценка точности аварийной системы управления Для оценки точности аварийной системы управления сравнивались значения параметров траектории полета корабля, определенных наземной сетью связи и слежения, основной системой управления и навигации и аварийной системой.
13.1.2 Изменение системы или объекта управления
13.1.2 Изменение системы или объекта управления Система или объект, содержащий ПО, которое было ранее сертифицировано в соответствии с определенными уровнем ПО и сертификационным базисом, могут быть использованы на другом объекте. При использовании ранее разработанного