10.4.3. ФЕРРИМАГНИТНЫЕ МАТЕРИАЛЫ
10.4.3. ФЕРРИМАГНИТНЫЕ МАТЕРИАЛЫ
В настоящее время большое внимание уделяется ферритам. Ферриты ведут свое происхождение от магнетита — естественного постоянного магнита, известного на протяжении всей истории человечества. Природный минерал — феррит железа, или магнетит Fe3O4, был давно известен как один из магнитных материалов. Учитывая низкую удельную электрическую проводимость магнетита (100 Ом?см). С. Гильберт (Германия) уже в 1909 г. предложил использовать его в высокочастотных магнитных цепях. Однако из-за плохих магнитных свойств, и прежде всего из-за низкой магнитной проницаемости, ферриты железа не нашли практического применения; к тому же сама техника высоких частот делала в те годы первые шаги. Лишь после интенсивных исследований, начатых в Голландии в 1933 г., удалось существенно улучшить характеристики ферритов и организовать их широкое внедрение в технику.
В 1936 г. научные исследования в этом направлении начала лаборатория фирмы «Филипс». К концу второй мировой войны благодаря фундаментальным исследованиям Я. Сноека в Голландии был разработан ряд синтетических магнитомягких ферритов с начальной магнитной проницаемостью 103 [10.27].
В СССР пионерами разработки ферритов являлись коллективы ученых, возглавляемые ГА. Смоленским, Н.Н. Шольц, К.А. Пискаревым, С.В. Вонсовским, К.М. Поливановым, С.А. Медведевым, К.П. Беловым, Е.И. Кондорским, РВ. Телесниным, Я.С. Шуром, Т.М. Перекалиной, И.И. Ямзиным, Л.И. Рабкиным, А.И. Образцовым и многими другими [10.30, 10.31,10.33].
Для получения высокой магнитной проницаемости ферритов, относящихся к группе поликристаллических материалов с кубической гранецентрированной решеткой, необходимо стремиться к уменьшению внутриструктурных напряжений и кристаллической анизотропии. Другими словами, магнитострикция и константа кристаллографической анизотропии должны быть близкими к нулевому значению. Исследованиями было установлено, что если образовать твердый кристаллический раствор оксида железа Fe2O3 с немагнитной присадкой, то точку Кюри можно сместить в область, близкую к комнатным температурам, и таким образом резко повысить магнитную проницаемость в рабочем диапазоне температур. В качестве немагнитного компонента наиболее пригодным оказался оксид цинка, так как феррит цинка кристаллизуется не в обращенной магнитной форме, а в форме нормальной немагнитной шпинели. В последующие годы была разработана большая группа магнито-мягких ферритов для различных диапазонов частот путем присадки цинка и никеля или цинка и марганца. По сравнению с никель-цинковыми марганец-цинковые ферриты обладают более высокой магнитной проницаемостью и намагниченностью насыщения. Наряду с этим тангенс угла диэлектрических потерь возрастает быстрее у марганец-цинковых ферритов начиная с частоты около 1 МГц; причина этого явления — смещение в сторону более низких частот гиромагнитной граничной частоты, увеличение размеров зерен структуры и уменьшение удельного электрического сопротивления материала. Поэтому в катушках высокой добротности марганец-цинковые ферриты применяют только для работы на частоте до 2 МГц, а для работы на частотах до 300 МГц сердечники изготовляют из никель-цинковых ферритов, имеющих также кубическую поликристаллическую структуру, но более низкую магнитную проницаемость.
Редкоземельные ферриты со структурой граната заняли в технике столь же важное место, как и ферриты со структурой шпинели. Формула гранатов может быть записана следующим образом: Me3Fe5O12, где Me обозначает ион редкоземельного металла. Изучение редкоземельных гранатов было затруднено тем, что их структуру относили к типу искаженного перовскита. В 50-х годах X. Форестье и Г. Гийо-Гийен (Франция) изготовили несколько соединений класса Fe2O3Me2O3, где Me обозначает лантан, празеодим, неодим, самарий, эрбий, иттрий, гадолиний, тулий, диспрозий и иттербий. Они обнаружили, что намагниченность насыщения этих соединений несколько ниже, чем намагниченность насыщения никелевого феррита, и что существует две температуры Кюри — выше 400 °С и около 300 °С, в которых намагниченность принимает нулевое значение. Одна из этих «точек Кюри» представляет собой температуру компенсации, характерную для некоторых ферримагнитных гранатов. Г. Гийо считал, что этот материал обладает кубической структурой типа перовскита, и установил соответствие между температурами Кюри и диаметрами металлических ионов. В 1954 г. Р. Потенэ и X. Форестье (Франция) опубликовали дополнительные данные о температурных зависимостях намагниченности для ферритов гадолиния, диспрозия и эрбия. Е.Ф. Берто и Д. Форра (Франция) в 1956 г. рассмотрели подробнее систему Fe2O3Me2O3 и предположили наличие новой структуры для этого класса материалов. Эта структура состоит из кубических элементарных ячеек, содержащих восемь формульных единиц 5Ре2О33Ме2О3.
Эта структура оказалась изоморфной с классическим природным гранатом Ca3Fe2Si3O12. Л. Неель, Ф. Берто, Д. Форра и Р. Потенэ (Франция) назвали эту новую группу ферримагнитных материалов редкоземельными гранатами.
В 1958–1970 гг. Д. Геллер и А. Джилео (США), А.Г. Титова, В.А. Тимофеева и Н.Д. Урсуляк (СССР) продолжили изучение структуры граната и ферримагнитных свойств иттриевого граната. Это соединение оказалось наиболее важным представителем данного класса веществ. Такие материалы оказались незаменимыми в сверхвысокочастотных устройствах.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Материалы
Материалы Невозможно точно определить, какой из материалов является главным, а какой — второстепенным. Здесь важно все. Неправильный подбор плитки может сказаться на эстетической стороне, а неправильный подбор клеящей прослойки (подстилающего слоя) — на
Материалы
Материалы Для ковки в условиях небольшой кузницы можно использовать довольно большое число различных металлов и сплавов. Большинство изделий выполняется из стали всевозможных марок.СтальКак говорилось ранее, для ручной ковки наиболее пригодна так называемая
Материалы
Материалы Формовочные материалыПри наличии всевозможных инструментов и приспособлений, модели и песчаной смеси, которую называют формовочной, можно изготовить литейную форму. В нее заливается металл. Этот процесс и есть получение отливки. Процесс изготовления
Пьезоэлектрические материалы
Пьезоэлектрические материалы Существует большое количество разнообразных пьезоэлектрических датчиков. Пьезоэлектрические датчики могут регистрировать вибрации, толчки и тепловое излучение. Компания Pennwall производит уникальный продукт, названный пьезоэлектрической
2. Сверхтвердые материалы
2. Сверхтвердые материалы Для изготовления различного режущего инструмента в настоящее время в различных отраслях промышленности, в том числе в машиностроительной, применяются три вида сверхтвердых материалов (СТМ): природные алмазы, поликристаллические синтетические
1. Неметаллические материалы
1. Неметаллические материалы Еще во второй половине XX в. в нашей стране уделялось большое внимание применению неметаллических материалов в различных отраслях промышленности и народного хозяйства в целом. Было налажено и постоянно наращивалось производство самых
4. Композиционные материалы
4. Композиционные материалы В различных отраслях хозяйства страны, в том числе и в строительстве, широко используются различные композиционные материалы на основе измельченной древесины: древесно—стружечные, древесно—волокнистые плиты, арболит, фибролит, плиты
3. Гидроизоляционные материалы
3. Гидроизоляционные материалы В строительстве, системе ЖКХ широко применяются различные гидроизоляционные материалы, которые предназначены для защиты строительных конструкций, зданий и сооружений от вредного воздействия воды и химически агрессивных жидкостей –
4. Электроизоляционные материалы
4. Электроизоляционные материалы В условиях большой распространенности различных электроустановок практически во всех отраслях промышленности и хозяйства страны в целом электроизоляционные материалы получили повсеместное применение. Самая важная характеристика
5. Смазочные материалы
5. Смазочные материалы В соответствии со стандартом смазочные материалы классифицируют по происхождению, физическому состоянию, по наличию присадок, по назначению, по температуре применения.По происхождению или исходному сырью смазочные материалы подразделяют
Сырьевые материалы
Сырьевые материалы Сырьевые материалы, используемые для производства стеклоизделий, условно подразделяются на две группы: главные и вспомогательные.К главным сырьевым материалам относятся вещества, с которыми в стекломассу вводятся кислотные, щелочные и
8.2.4.3.2 Сопутствующие материалы
8.2.4.3.2 Сопутствующие материалы Должны быть установлены правила размещения материалов, связанных с электронной документацией, и их
П.2. Материалы для моделей
П.2. Материалы для моделей В практике ювелирного литья применяются только воскоподобные модельные материалы с температурой плавления ниже 100 °C. Это позволяет удалять их горячей водой, паром или в термическом воздушном шкафу.Такие воскоподобные составы используются для
6.1.2. Смазочные материалы
6.1.2. Смазочные материалы Смазочные материалы предназначены для уменьшения интенсивности изнашивания и сил сопротивления в узлах трения, а также для обеспечения нормального функционирования систем, содержащих смазки.Смазочные материалы, применяемые для автомобилей и
Коллектив авторов
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉