10.4.4. МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ

We use cookies. Read the Privacy and Cookie Policy

10.4.4. МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ

До 1910 г. постоянные магниты изготовлялись из углеродистой стали, так как эта сталь обладает относительно небольшим значением коэрцитивной силы Нс и большим значением индукции Вr, отношение длины магнитов к поперечному сечению было большим. Чтобы уменьшить рассеяние, магниты выполнялись в виде подковы, которая и стала условным обозначением постоянного магнита. Наибольшее значение магнитной энергии для таких материалов составляло 1,6 кДж/м3.

Возможность повышения магнитной энергии была показана еще в 1885 г. при исследовании вольфрамовой стали. В период первой мировой войны нашли применение хромистые стали (до 6% Cr), в которых энергия достигала 2,5 кДж/м3.

В 1917 г. находят, что добавки в сталь до 36% кобальта приводят к значительному повышению энергии — до 8 кДж/м3. Кобальтовые стали в ограниченном объеме изготовляются и применяются в настоящее время.

В 1926–1927 гг. на заводе «Красный путиловец» исследуются свойства и технология производства вольфрамовой стали. В 1926 г. на Ижевском заводе отливаются слитки нескольких марок кобальтовой стали для постоянных магнитов. Исследование кобальтовых сталей проводилось в Горной академии и ВЭИ.

В 1934 г. кобальтовую сталь, которая имеет коэрцитивную силу в 2,5–3,5 раза выше, чем вольфрам истая, начинает выпускать завод «Электросталь». Сталь находит широкое применение в приборостроении.

Высокие механические параметры стали позволяют изготовлять магниты достаточно тонкими и сложной формы. Во время второй мировой войны была разработана магнитная сталь МТ, без дефицитных добавок кобальта и никеля с добавками алюминия и углерода, обладающая высокими магнитными свойствами (магнитная энергия до 3,6 кДж/м3 и коэрцитивная сила больше 16 кА/м).

Начиная с середины 30-х годов среди лабораторий, занимающихся исследованием магнитных материалов в СССР, на первое место выдвигается магнитная лаборатория (МЛ) ВЭИ, заслуга которой состоит не только в исследовании материалов, но и в их внедрении в производство. Большую работу МЛ ВЭИ проделала в области исследования сплавов для постоянных магнитов.

В 1931 г. Т. Мишимой (Япония) и В. Кестером (Германия) были созданы сплавы для постоянных магнитов, которые приобретают свои магнитные свойства в результате процессов дисперсионного твердения. Это сплавы типа Fe-Co-W, Fe-Co-Mo и Fe-Ni-A (прежнее название альни). Исследование этих сплавов в нашей стране началось в 1933 г. в МЛ ВЭИ, где были получены первые образцы, имеющие следующие параметры: Вr = 0,7?0,8 Тл и Нс = 34 кА/м.

В 1934 г. К. Хонда (Япония) разрабатываются сплавы Fe-Ni-Al-Co (альнико), которые наиболее подробно исследовались в различных вариантах составов. Значение магнитной энергии в этих сплавах, легированных медью, достигает 15,2 кДж/м3.

Магнитотвердые сплавы на основе системы железо-никель-алюминия позволили отечественной электротехнической промышленности освоить выпуск литых постоянных магнитов из сплавов альни для генераторов, не уступавших по свойствам зарубежным. Сплавы альни имеют меньшую остаточную магнитную индукцию, чем мартенситные стали, но значительно превосходят их по значению коэрцитивной силы и удельной магнитной энергии.

В истории исследований магнитных сплавов важное значение имеют работы Д.А. Оливера и Дж. Шедцена (Англия) по исследованию влияния магнитного поля в процессе охлаждения на свойства сплавов типа Fe-Ni-Al с повышенным содержанием кобальта, опубликованные в 1938 г. Благодаря их работам удалось довести магнитную энергию сплавов до 32 кДж/м3. Следующий шаг в области улучшения характеристик постоянных магнитов был сделан в 1948 г. при исследовании процессов направленной кристаллизации таких сплавов. Путем регулирования скорости охлаждения изделий удалось получить согласованную ориентацию по ребрам кубов кристаллитов, причем этот процесс усиливается при воздействии магнитного поля на образец. Методом направленной кристаллизации удается повысить остаточную магнитную индукцию до 1,3 Тл и магнитную энергию до 87,5 кДж/м3. Такие результаты в настоящее время достигаются только при специальном изготовлении магнитов. В промышленных условиях, которые обеспечивают частичную ориентацию кристаллов, магнитная энергия достигает не более 58 кДж/ м3. В ряде случаев необходимы материалы со специфическими механическими свойствами. Так, например, в производстве специальных измерительных приборов нужны постоянные магниты, изготовленные из тонколистового или пруткового сортамента; для роторов высокоскоростных машин требуются магниты с высокой прочностью на разрыв. Этим требованиям хорошо удовлетворяют исследованные в 1935 г. сплавы на основе Fe-Ni-Cu, которые имеют исключительно высокие магнитные свойства и способны подвергаться прокатке. В 1937 г. было найдено, что свойства этих сплавов существенно улучшаются, если подвергнуть их деформации в холодном состоянии. В 1940 г. был разработан сплав викалой — Fe-Co-V, по магнитным свойствам превосходящий тройные сплавы Fe-Ni-Cu, но несколько хуже поддающийся механической обработке.

В 1930 г. Н.Н. Разумовскому в СССР было выдано авторское свидетельство на способ улучшения свойств постоянных магнитов путем охлаждения их в магнитном поле. В 1944 г. А.С. Заимовскому, К.В. Нащокину и Л.М. Львовой удалось разработать сплав магнико (ЮНДК24), который превосходит альнико в 1,5–2 раза по остаточной магнитной индукции и в 3 раза по энергии. Появление анизотропных магнитов, или магнитов, имеющих магнитную текстуру, позволило уменьшить массу систем с постоянными магнитами и расширить область их применения. Высококоэрцитивные сплавы системы ЮНДК хрупки и обрабатываются только шлифованием или электроискровым методом. Поэтому постоянные магниты из этих сплавов изготовляются в основном фасонным литьем. Однако для небольших постоянных магнитов этот способ затруднителен. Для решения задачи были выбраны два пути: использование металлокерамической технологии и поиск деформируемых магнитотвердых материалов, из которых можно было бы изготовлять магниты резанием, штамповкой и точением. В табл. 10.2 приведены магнитные свойства сплавов ЮНДК.

Исследование и внедрение металлокерамических магнитов проведено ВНИИЭМ совместно с заводом «Электроконтакт». Отечественная промышленность освоила ряд деформируемых сплавов: викаллой, сплав на основе платины и др. Викаллой, выпускаемый в виде проволоки, обладает высокими магнитными свойствами и достаточной пластичностью, что позволяет легко получать тонкие цилиндрические магниты. Викаллой, изготовляемый в листах, имеет худшие магнитные свойства, но очень эффективен в производстве стрелок буссолей и компасов. Сплав на основе платины дорог и дефицитен, однако его коэрцитивная сила, магнитная энергия и пластичность настолько высоки, что магниты массой в доли грамма успешно применяются в приборостроении и в электрических наручных часах.

Объем производства литых постоянных магнитов из сплавов альни для изделий широкого потребления достигает нескольких тысяч тонн в год, на что затрачивается несколько сотен тонн дефицитного и дорогого никеля. Поэтому наряду с улучшением магнитных свойств сплавов системы ЮНДК проводились поиски дешевых и недефицитных магнитотвердых материалов.

Магнитотвердые материалы на основе соединений RCo, где R — редкоземельные ионы La, Pr, Nd, Sm и др., впервые разработаны в конце 60-х годов в СССР, США и Японии и в настоящее время по магнитным параметрам — коэрцитивной силе и максимальной магнитной энергии — намного превосходят все известные магнитотвердые материалы. Магниты из соединений RCo являются уникальными для применения в магнитных системах, где используется сила отталкивания. Магниты из материалов SmCo5 и (SmPr)Co5 широко используются в различных устройствах.

Таблица 10.2. Магнитные параметры сплавов (ГОСТ 17809–72)

Марка сплава Максимальная магнитная энергия Wmax, кДж/м3 HC, кА/м Остаточная индукция Вr, Тл Тип кристаллической структуры Не менее ЮНД4 3,6 40 0,50 Равноосная ЮНД8 5,1 44 0,60 ЮНТС 4,0 58 0,43 ЮНДК 15 6,0 48 0,75 ЮНДК18 9,7 55 0,90 ЮНДК18С 14 44 1,10 ЮН13ДК24С 18 36 1,30 ЮН13ДК24 18 40 1,25 ЮН14ДК24 18 48 1,20 ЮН15ДК24 18 52 1,15 ЮН14ДК24Т2 15 60 1,10 ЮН13ДК25А 28 44 1,40 Столбчатая ЮН14ДК25А 28 52 1,35 ЮН13ДК25БА 28 48 1,40 ЮН14ДК25БА 28 58 1,30 ЮН15ДК25БА 28 62 1,25 ЮНДК31ТЗБА 32 92 1,15 ЮНДК34Т5 14 92 0,75 Равноосная ЮНДК35Т5Б 16 96 0,75 ЮНДК35Т5 18 110 0,75 ЮНДК35Т5БА 36 110 1,02 Столбчатая ЮНДК35Т5АА 40 115 1,05 Монокристаллическая ЮНДК38Т7 18 135 0,75 Равноосная ЮНДК40Т8 18 145 0,70 ЮНДК40Т8АА 32 145 0,90 Монокристаллическая

Примечание. В обозначениях марок сплавов буквы означают: Б — ниобий; Д — медь; К — кобальт; Н — никель; С — кремний; Т — титан; Ю — алюминий; А — столбчатая кристаллическая структура; АА — монокристаллическая структура. Цифры указывают процентное содержание элемента.

Недостатком является высокая стоимость. Свойства некоторых промышленных магнитов из сплавов RCo5 приведены в табл. 10.3.

Таблица 10.3. Промышленные магниты из сплавов RCo5 (по ГОСТ 21559–76)

Марка сплава Химический состав, % (остальное Со) Br, Tл кА/м W кДж/м3 Sm Sm + Pr КС37 36,0–38,5 — 0,77 540 55 КС37А 36,0–38,5 — 0,82 560 65 КСП37 — 36,0–38,5 0,85 520 65 КСП37А — 36,0–38,5 0,90 500 73

Примечание. В обозначении марки сплава: К — кобальт; С — самарий; П — празеодим; А — улучшенная структура. 

В последние 40 лет большие успехи достигнуты в разработке магнитов на основе микропорошков железа, технология которых была разработана в СССР А.С. Эйсуровичем и А.Б. Альтманом, сплавов марганца с висмутом подробно исследованные С. Гийо (Франция), ферритов со структурой магнетоплюмбита Е. Гортер (Франция). Впервые подобные магниты, состоящие из оксидов железа и кобальта, были описаны в 1933 г. японцами X. Като и Т. Такай. В те же годы проводилась разработка постоянных магнитов на основе металлических сплавов типа Fe-Ni-Al; поэтому работы над оксидами металлов не привлекли интереса и на долгие годы были фактически заброшены. Лишь в 1952 г. фирма «Филипс» (Голландия) сообщила о первом техническом применении оксидных магнитов. Фирмой был предложен материал под названием ферроксдюр, состоящий из оксидов железа с барием и имеющий химическую формулу BaFe12O19.

Поиски ученых (С.А. Медведев и др.) завершились разработкой технологии серийного производства магнитов, прессованных из порошка бариевого феррита. Бариевые постоянные магниты обладают коэрцитивной силой 120–240 кА/м при остаточной магнитной индукции 0,2–0,38 Тл и магнитной энергии 3,2–3,4 кДж/м3. Благодаря дешевизне и простоте изготовления они находят все большее применение в изделиях широкого потребления: осветительных генераторах для велосипедов, громкоговорителях, дверных затворах, держателях и т.п.

Данный текст является ознакомительным фрагментом.