11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА
11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА
11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ
Силовая электроника была и остается наиболее энергоемким направлением развития промышленной электроники. Функции этого направления — регулируемое преобразование электрической энергии. Важнейшие виды преобразования энергии: выпрямление переменного тока, регулирование выпрямленного напряжения (тока), инвертирование постоянного тока, преобразование частоты, преобразование числа фаз. Основные задачи, которые решала и решает силовая электроника, — создание элементной и аппаратной базы; развитие схемотехники; создание теории вентильных цепей, методов анализа и проектирования преобразователей электроэнергии; развитие методов и технических средств управления преобразователями электроэнергии. Решение этих задач и составляет основные этапы развития и становления современной силовой электроники — важнейшей составной части промышленной электроники.
Эффект выпрямления переменного тока с использованием электрической дуги впервые был обнаружен и исследован В.Ф. Миткевичем в начале XX в. Им же были разработаны получившие широкое распространение двухполупериодная и трехфазная нулевая схемы выпрямления (1901 г.). Особенности работы схем при различных нагрузках исследовались А.Л. Гершуном (1901 г.), а одно- и двухполупериодное выпрямление с применением электронных вентилей — кенотронов — Н.Д. Папалекси (1911 г.) [11.1, 11.2].
Мощные выпрямители впервые были созданы на основе дугового разряда в парах ртути с холодным катодом. Патент на первый прибор был выдан в США Купер-Хюиту в 1901 г. Затем в течение 20 лет произошел скачок в преобразовании тока в промышленных масштабах. Во многих странах, в том числе и в СССР, быстро развивалась теория газового разряда, создавались конструкции мощных ртутных вентилей, разрабатывались специальные виды трансформаторов, защитной и коммутационной аппаратуры. Нашими учеными и инженерами в короткий срок были созданы мощные преобразовательные агрегаты, не уступавшие зарубежным. Без этих агрегатов было невозможно промышленное производство стратегических материалов (алюминия, цинка, титана), не могли работать прокатные станы, не могла осуществляться электрификация городского и магистрального транспорта. Большие государственные вложения в развитие силовой электроники затрагивали сферы науки, производства и образования.
Исследования процессов в дуговом разряде, определение свойств материалов, способных работать в условиях высокого вакуума и в газоразрядной плазме, разработка конструкции силовых вентилей — таковы важнейшие вопросы, которые решались в лабораториях заводов «Электросила», «Светлана» и в электровакуумных лабораториях ВЭИ.
Преобразование тока с применением газоразрядных (ионных) приборов оказалось наукоемкой областью электротехники. Создание мощных приборов, способных работать в широком диапазоне токов, при различных температурах окружающей среды стало возможным лишь на основе глубоких представлений о физических процессах. Среди советских ученых, чей вклад в исследования физики газового разряда особенно заметен, назовем В.А. Фабриканта, исследовавшего оптические свойства разряда [11.6], В.Л. Грановского, изучавшего процессы деионизации разрядного промежутка в ионных приборах, Б.Н. Клярфельда, занимавшегося свойства-
ми положительного столба разряда в приборах с накаленным и ртутным катодами. Их работы, впервые опубликованные в 1940 г., получили широкое признание во всем мире [11.5–11.8]. Автор ряда крупных работ в области ионных приборов и силовой схемотехники И.Л. Каганов обеспечил выпуск специалистов в области газового разряда, электротехники и импульсной техники [11.15].
Проектированием преобразовательных подстанций занимался проектный институт «Тяжпромэлектропроект». Важную роль сыграли работы Г. А. Ривкина — сотрудника этого института.
История развития преобразовательной техники в нашей стране начинается с создания первых стеклянных ртутных вентилей с ртутным катодом в Нижегородской лаборатории В.П. Вологдина в 1921 г. Стеклянные вентили выпускались для выпрямления напряжения промышленной сети; специальные конструкции высоковольтных вентилей использовались для питания радиопередающих устройств. Ртутные вентили зарекомендовали себя сравнительно надежными и долговечными. Конструкция ртутного вентиля подразумевала использование схем с общей нулевой точкой. Соединение трансформаторов в трехфазных схемах выполнялось по схеме звезда — звезда или звезда — зигзаг при больших мощностях [11.11].
Каскадные схемы выпрямительных агрегатов с последовательным включением отдельных изолированных выпрямителей, предложенные в 1921 г. В.П. Вологдиным, позволили разработать выпрямители высокого напряжения. На основе каскадных схем в 1926–1927 гг. был выполнен ртутно-выпрямительный агрегат мощностью 120 кВт и напряжением 12 кВ для питания радиостанций.
Ограниченные токи и напряжения стеклянного ртутного вентиля заставили искать пути увеличения единичной мощности вентиля. Важным этапом на этом пути стало создание в 1926 г. на ленинградском заводе «Электросила» металлического многоанодного ртутного вентиля РВ-5 на напряжение 600 В и ток 500 А (рис. 11.1). Это был разборный агрегат с непрерывно действующей двухступенчатой вакуумной откачной системой и с водяным охлаждением. Выпрямитель был оснащен электромагнитным устройством поджига дуги. На основе РВ-5 была создана серия агрегатов, которая позволила довести выпрямленный ток до 1,6–1,8 кА при напряжении 825 В. Это позволило отказаться от электромашинных преобразователей для питания тяговых сетей уже на первых линиях метрополитена в Москве. Дальнейшее повышение вентильной прочности дало возможность перевести на ртутно-выпрямительные агрегаты питание пригородных электропоездов напряжением 3,3 кВ [11.14–11.16].
Рис. 11.1. Ртутно-выпрямительиый шестианодный агрегат с водяным охлаждением на ток 500 А и напряжение 600 В (1926 г.)
В 1923 г. А.Н. Ларионовым была предложена трехфазная мостовая выпрямительная схема, которая стала самой популярной в эпоху полупроводниковых силовых преобразователей [11.24]. С ростом мощности агрегатов стали актуальными вопросы влияния преобразователей на питающую сеть. В дополнение к известному показателю энергетической эффективности — углу сдвига добавились такие, как коэффициент искажений формы потребляемого тока и фазовая асимметрия. Работа управляемого выпрямителя сопровождается ухудшением косинуса угла сдвига и коэффициента искажений. Влияние этих факторов могло быть улучшено лишь на основе анализа энергообмена между питающей сетью, нагрузкой и всеми реактивными элементами, входящими в преобразовательную систему. Вопросы такого энергообмена в нашей стране были изучены О.А. Маевским, Ф.И. Бутаевым, Е.Л. Эттингером. Были предложены схемы, в которых с целью повышения коэффициента мощности сочетались фазовые методы регулирования напряжения (изменением угла регулирования) с методами переключения питающего напряжения, применения нулевых вентилей и использованием так называемого несимметричного управления.
Дальнейшее развитие преобразовательной техники показало перспективность и актуальность этих исследований. В послевоенные годы доля преобразовательной нагрузки в энергетическом балансе и ее влияние на работу энергосистемы возросли. Более жесткие требования национальных стандартов на качество энергии стало возможно выполнять лишь на основе схем с принудительной коммутацией и на основе схем с двухоперационными силовыми ключами. Помимо преобразователей, ведомых сетью, возросла роль автономных преобразователей. Среди них следует выделить две группы: автономные преобразователи для индукционного нагрева и трехфазные автономные инверторы для электропривода.
Инверторы с повышенной частотой (сотни — тысячи герц) использовались в качестве источников питания для мощных (сотни киловатт) установок индукционного нагрева либо в качестве промежуточного звена для преобразователей постоянного напряжения. Они выполнялись по схемам с параллельной, последовательной или комбинированной конденсаторной коммутацией. Принципиальной особенностью этих инверторов является необходимый для преобразователей на однооперационных вентилях опережающий характер тока. Первым подобную схему предложил в 1938 г. немецкий ученый В. Остендорф (W. Ostendorf), в последующие годы автономные инверторы на повышенные частоты в нашей стране исследовались И.Л. Кагановым, А.Е. Слухоцким, А.С. Васильевым.
Инверторы для электропривода интенсивно разрабатывались в 50-е годы. В эти годы в электроприводе стали очевидны как достоинства асинхронных двигателей, так и их принципиальное ограничение — необходимость изменения частоты питающей сети для регулирования скорости. В связи с этим большие надежды возлагались на трехфазные автономные инверторы с регулируемыми частотой и напряжением. Для асинхронного привода с глубоким регулированием характерно требование хорошего гармонического состава выходного напряжения. Принципы формирования трехфазного синусоидального напряжения методами широтно-импульсной модуляции потребовали разработки новых классов преобразователей, основанных на принудительной коммутации однооперационных вентилей.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
«ИМПУЛЬСНАЯ ЭНЕРГЕТИЧЕСКАЯ ПУЛЯ»
«ИМПУЛЬСНАЯ ЭНЕРГЕТИЧЕСКАЯ ПУЛЯ» Вот что об этом проекте рассказал журналист «Комсомольской правды» Владимир Лаговский: «Проект американский. Называется «Импульсная энергетическая пуля», или сокращенно по-английски — PEP (Pulsed Energy Projectile—Импульсный энергетический
4.3. Молекулярная электроника
4.3. Молекулярная электроника При размышлениях о смене парадигмы в вычислительной технике и новых материалах на следующий период развития (его можно назвать посткремниевым) сразу вспоминается молекулярная электроника, которая постепенно становится нанотехнологической
4.4.5.3. Поучительный пример – гибридная молекулярная электроника
4.4.5.3. Поучительный пример – гибридная молекулярная электроника В ближайшие годы сразу несколько фирм приступят к реализации проектов, нацеленных на объединение достоинств обоих описанных выше подходов. Речь идет о попытках практически организовать самосборку
1. ЭНЕРГЕТИЧЕСКАЯ СЛУЖБА ПРЕДПРИЯТИЯ И СИСТЕМА ПЛАНОВО-ПРЕДУПРЕДИТЕЛЬНОГО РЕМОНТА
1. ЭНЕРГЕТИЧЕСКАЯ СЛУЖБА ПРЕДПРИЯТИЯ И СИСТЕМА ПЛАНОВО-ПРЕДУПРЕДИТЕЛЬНОГО РЕМОНТА 1.1. Общая концепция системы планово-предупредительного ремонта энергетического оборудования 1.1.1. Система планово-предупредительного ремонта энергетического оборудования (далее –
Часть 4 ЭЛЕКТРОНИКА И ФИЗИЧЕСКАЯ ХИМИЯ В БТР
Часть 4 ЭЛЕКТРОНИКА И ФИЗИЧЕСКАЯ ХИМИЯ В БТР День, когда мы узнаем, что такое электричество, вероятно, станет ещё более величайшим событием в летописи человечества, чем любое другое происшествие, отражённое в нашей истории. Придёт время, когда комфорт, возможно, даже само
§ 4.9 Лазеры и квантовая электроника
§ 4.9 Лазеры и квантовая электроника Никто не оспаривает тот факт, что я сделал первый лазер… Если они сделали это, то где же тогда, чёрт возьми, их лазер? Теодор Мейман об учёных-кванторелятивистах Лазеры стали важнейшей составляющей современной науки, техники и быта.
11. КВАНТОВАЯ ЭЛЕКТРОНИКА И ОПТОЭЛЕКТРОНИКА
11. КВАНТОВАЯ ЭЛЕКТРОНИКА И ОПТОЭЛЕКТРОНИКА В этой главе вас ожидает рассказ о видимых и невидимых лучах, о светящихся кристаллах, о красном луче, позволяющем разговаривать тысяче человек, и о тоненькой ниточке, по которой все сказки «Тысячи и одной ночи» можно передать
12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА
12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА В этой главе мы не будем обращаться к истории, поскольку космическая эра продолжается всего три десятилетия, а расскажем о том, как радиоэлектроника, которой стало тесно на огромной Земле, завоевывает просторы Солнечной системы. О том, как
Глава 11. ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА
Глава 11. ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА 11.1. ОБЩИЕ ПОЛОЖЕНИЯ Электроника — область науки и техники, изучающая электрофизические явления в вакууме, газе, твердом теле и на границе сред; приборы и системы, основанные на этих явлениях.Современная электроника, опираясь на
11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА
11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА Под технологической электроникой обычно понимается совокупность методов и средств для создания и использования электронных и ионных пучков или электромагнитных волн с целью непосредственного воздействия на объект, подвергающийся
11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА
11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА Разработка информационных средств производилась структурами, для которых промышленные устройства были побочным продуктом, основные лежали в оборонной сфере. Это затрудняет восстановление исторических данных о творцах новой техники в