2.9. Измерения фона: сосчитать каждый нейтрон!

We use cookies. Read the Privacy and Cookie Policy

2.9. Измерения фона: сосчитать каждый нейтрон!

В 1974 году среди задач лаборатории нейтронных генераторов, появилась еще одна — измерения нейтронного фона (немногих нейтронов, а не их гигантских потоков от ядерного взрыва). Чтобы регистрировать фон, применялись газоразрядные счетчики, наполненные газовыми смесями на основе гелия-3, имеющего очень большое (5400 барн) сечение реакции на нейтронах, продукты которой (тритон и протон) обладают хорошей ионизирующей способностью. Счетчик представляет металлический цилиндр, наполненный газовой смесью (почему не чистым газом — станет ясно из главы, в которой речь пойдет об исследованиях ионной кинетики).

По оси проходит тонкая вольфрамовая нить. При подаче напряжения в несколько киловольт создается крайне неоднородное распределение электрического поля: вблизи нити напряженность его очень высока — настолько, что газ в этой области пробивается, но «частично» — по мере удаления от нити и снижения напряженности поля, «лавинообразное» размножение заряженных частиц прекращается. Начинаясь со случайного акта ионизации (например — от космического излучения), разряд затем «поддерживает сам себя»: необходимые для этого заряженные частицы образуются на электродах и в газе при облучении ультрафиолетом, испускаемым при ионизации, «выбиваются» из металла электродов при столкновениях разогнанных полем носителей заряда. Такой разряд сопровождается свечением («короной») и змеиным шипением. Ток развитого[36] (протекающего при достаточно высоком потенциале коронирующего электрода) разряда практически постоянен (с незначительными флуктуациями) и составляет микроамперы.

Если «залетевшая» частица ионизует газ в счетчике, то установившееся распределение заряженных частиц между электродами нарушается и ток скачком возрастает — настолько, что даже осциллограф без дополнительного усилителя надежно регистрирует этот импульс.

Сложность заключалась в том, что прибор должен был работать в глубокой шахте, причем жилы кабеля, по которым подавалось постоянное напряжение питания (24 В) были стальными, довольно тонкими и сопротивление их заметно менялось при колебаниях температуры. Имевшиеся стабилизаторы напряжения не справлялись с компенсацией всех неблагоприятных возмущений.

Работу поручили двум молодым специалистам, Б. Смирнову и мне, причем я был ответственен за высоковольтную часть схемы, а Борис (выпускник факультета автоматики МИФИ), не имевший опыта работы с высоким напряжением — за стабилизатор. Борис требовал во много раз уменьшить ток, потребляемый преобразователем напряжения (из 24 В в 2,5 кВ): это означало меньшее падение напряжения на кабеле и более благоприятный режим работы стабилизатора.

Для меня знакомство с преобразовательной техникой началось с изучения нескольких популярных брошюр, потому что такой курс не преподавали на нашем факультете. Со времен прочтения книг Лея и Сибрука, была выработана привычка «вытаскивать» информацию из каждой фразы. В преобразователе было нечто общее с уже изученной схемой поджига трубки: тут тоже перемагничивался сердечник трансформатора. На сердечнике были намотаны, причем — в противоположных направлениях — две первичные обмотки. Если, при протекании тока в одной, сердечник намагничивался до насыщения и эта обмотка хорошо проводила ток, то другая — почти не проводила его, потому что для нее сердечник был намагничен в «другом» направлении. Два транзистора поочередно переключали первичные обмотки, при этом ток во вторичной обмотке скачками менял полярность, с частотой в несколько килогерц. Было спаяно много макетов преобразователя, когда, потребление тока довели до физического минимума в 12 миллиампер (при таком токе даже запуск был неустойчивым, задерживаясь иногда на 5-10 минут после подачи напряжения). Остановились, конечно, на более надежном значении в 20 миллиампер. В трансформаторе преобразователя требовалось вручную намотать 12000 витков вторичной обмотки вокруг кольцевого сердечника, при этом надежно изолируя каждый слой обмотки — адова работа!

Измерители фона должны были, в отличие от всего, что мне приходилось делать раньше, производиться небольшой серией. Макет прошел все температурные, ресурсные и прочие испытания, но, когда конструкторы и технологи приступили к проектированию изделия, у них полезли на лоб глаза, прежде всего — от впечатлений, которые они вынесли от трансформатора. Их требование снизить трудоемкость было, конечно, справедливым и позже прошло решение, устроившее всех. Оно заключалось в том, чтобы отказаться от изоляции слоев, увеличив нагрузку на провода: каркас сердечника был разделен па много секций, внутри каждой из которых разрешалось наматывать витки с перехлестами. Число секций было таким, что внутри каждой был возможен (да и то маловероятен) контакт проводов с разностью потенциалов не более 30 В. Такая конструкция сняла многие претензии технологов.

Данный текст является ознакомительным фрагментом.